Glaciokarsts pp 373-499 | Cite as

Notable Glaciokarsts of the World

Part of the Springer Geography book series (SPRINGERGEOGR)


In this chapter, notable glaciokarsts of the world are presented. Geographical location, geologic and tectonic settings, climatic conditions, glaciation phases as well as surface and underground karst landforms are presented about each selected region. Obviously, the areal extent, the degree of exploration and the amount of publicly available information are different in each case. Historically, the first glaciokarst studies were based on the Alps, the Pyrenees, the Dinaric Alps and the British Isles, and they have remained in the focus since then. Hence, these regions are presented here in more detail, but even these presentations can be considered only short overviews. Some other glaciokarst terrains, such as Scandinavia or the Rocky Mountains, have also been thoroughly studied but later in history; nevertheless, there are abundant internationally available publications about them. Certain parts of the Balkan Peninsula, the Apennines or even Anatolia received high attention more recently and novel methods have been used to investigate their glaciokarst terrains. The Carpathians and the Appalachians, which are also discussed in this chapter, are extensively studied mountains in general, but glaciokarsts occupy a relatively small proportion in them. On the other hand, there are still regions, which are difficult to access, where glaciokarsts are poorly explored, and/or the available literature is limited (or the publications are only in Russian, for instance). Some of them, namely, the Altai Mountains, the Greater Caucasus, the Tian Shan, the Pamir and the Patagonian archipelago, are also briefly presented here. Finally, it is noted that our selection does not contain all glaciokarsts of the world because it is beyond the scope of this chapter.


Alpine glaciokarst Arctic glaciokarst Glacial phases LGM Microglacier Cosmogenic nuclide chronology U-series dating Exposure age Isostatic rebound 


  1. Ackert RP Jr, Becker RA, Singer BS, Kurz MD, Caffee MW, Mickelson DM (2008) Patagonian glacier response during the Late Glacial-Holocene transition. Science 321:392–395CrossRefGoogle Scholar
  2. Adamson KR, Woodward JC, Hughes PD (2014) Glaciers and rivers: pleistocene uncoupling in a Mediterranean mountain karst. Quatern Sci Rev 94:28–43CrossRefGoogle Scholar
  3. Adamson KR, Woodward JC, Hughes PD (2015) Middle Pleistocene glacial outwash in poljes of the Dinaric karst. Geol Soc Am Spec Pap 516:516–520Google Scholar
  4. Andrieu-Ponel V, Hubschman J, Jalut G, Herail G (1988) Chronologie de la déglaciation des Pyrénées françaises. Bulletin de l’Association Française pour l’Etude du Quaternaire 34–35(2–3):55–67CrossRefGoogle Scholar
  5. A.R.S.I.P. (1985) Le Karst de la Pierre Saint-Martin en quelques chiffres. Karstologia 6(2):3–6Google Scholar
  6. Atkinson TC (1983) Growth mechanisms of speleothems in castleguard cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 15:523–536CrossRefGoogle Scholar
  7. Aucelli PP, Cesarano M, Di Paola G, Filocamo F, Rosskopf CM (2013) Geomorphological map of the central sector of the Matese Mountains (Southern Italy): an example of complex landscape evolution in a Mediterranean mountain environment. J Maps 9(4):604–616CrossRefGoogle Scholar
  8. Audra P (1994) Alpine karst speleogenesis: case studies from France (Vercors, Chartreuse, Ile de Crémieu) and Austria (Tennengebirge). Cave Karst Sci 21(3):75–80Google Scholar
  9. Audra P (2000) Le karst haut alpin du Kanin (Alpes Juliennes, Slovénie-Italie). Karstologia 35(1):27–38Google Scholar
  10. Auly T (2008) Quelques morphologies de rapport karst/glaciaire dans les Pyrénées (France). In: Tyc A, Stefaniak K (ed) Karst and cryokarst. University of Silesia Faculty of Earth Sciences, University of Wrocaw Zoological Institute, Sosnowiec-Wroclaw, Pologne, pp 129–154Google Scholar
  11. Baker VR (1968) Limestone caves in glaciated areas. Nat Speleol Soc Bull 30(2):36–37Google Scholar
  12. Baranowski S (1975) Report on the field work of the Polish scientific expedition to Spitsbergen in 1974. Uniwersytet Wroclawski, 25 pGoogle Scholar
  13. Barbaroux L, Besset Y (1968) Le karst de Sarsøyra (RiveNord Avatsmarkbre) Vest Spitsbergen. Norois 57:97–103CrossRefGoogle Scholar
  14. Baroni C, Pieruccini P, Bini M, Coltorti M, Fantozzi PL, Guidobaldi GI, Nannini D, Ribolini A, Salvatore MC (2015) Geomorphological and neotectonic map of the Apuan Alps (Tuscany, Italy). Geografia Fisica e Dinamica Quaternaria 38(2):201–227Google Scholar
  15. Bathrellos GD, Skilodimou HD, Maroukian H (2015) The significance of tectonism in the glaciations of Greece. Geological Society, London, Special Publications, p 433Google Scholar
  16. Bauer F, Zötl J (1972) Karst of Austria. In: Herak M, Stringfi eld VT (eds) Karst, important Karst of the Northern Hemisphere. Elsevier, Amsterdam, pp 225–265Google Scholar
  17. Bayari S, Özbek O (1995) An inventory of karstic caves in the Taurus Mountain Range (Southern Turkey): preliminary evaluation of geographic and hydrologic features. Cave Karst Sci 21(3):81–92Google Scholar
  18. Bayari S, Zreda M, Çiner A, Nazik L, Törk K, Özyurt N, Klimchouk A, Sarikaya AM (2003) The extent of Pleistocene ice cap, glacial deposits and glaciokarst in the Aladaglar massif: central Taurids range, southern Turkey. In: XVI INQUA Congress, Paper, 55360Google Scholar
  19. Bayrakdar C, Çilğin Z, Döker MF, Canpolat E (2015) Evidence of an active glacier in the Munzur Mountains, eastern Turkey. Turk J Earth Sci 24(1):56–71CrossRefGoogle Scholar
  20. Bennett RA, Hreinsdóttir S, Buble G, Bašić T, Bačić Ž, Marjanović M, Casale B, Gendaszek MA, Cowan D (2008) Eocene to present subduction of southern Adria mantle lithosphere beneath the Dinarides. Geology 36(1):3–6CrossRefGoogle Scholar
  21. Benson L, Madole R, Landis G, Gosse J (2005) New data for late Pleistocene Pinedale alpine glaciation from southwestern Colorado. Quatern Sci Rev 24(1):49–65CrossRefGoogle Scholar
  22. Bertrand G (1971) Morphostructures cantabriques: Picos de Europa, “Montaña” de León et de Palencia. Revue Geographique des Pyrenees et du Sud-Ouest 42(1):49–70CrossRefGoogle Scholar
  23. Biese WB (1956) Uber Karstvorkommen in Chile. Die Höhle 7:91–96Google Scholar
  24. Biese WB (1957) Auf der Marmor-Insel Diego de Almagro (Chile). Natur und Volk 87(4):123–132Google Scholar
  25. Bini A (1997) Problems and methodologies in the study of the Quaternary de- posits of the southern side of the Alps. Geologia Insubrica 2(2):11–20Google Scholar
  26. Bini A (1998) Rapporti tra evoluzione dei versanti e endocarso: studio dei sedimenti della grotta La Nevera (2693 LO CO) sul M. Generoso (Svizzera, Italia), Il QuaternarioGoogle Scholar
  27. Bini A, Delannoy JJ, Maire R, Quinif Y (1989) Générations de cavités karstiques dans les chaînes alpines. C R Acad Sci Paris 309(2):1183–1190Google Scholar
  28. Bini A, Tognini P, Zuccoli L (1998) Rapport entre karst et glaciers durant les glaciations dans les vallées préalpines du Sud des Alpes. Karstologia 32:7–26 (Fédération française de spéléologie, Paris & Association française de karstologie, Bordeaux)Google Scholar
  29. Birkenmajer K (2008) Karst sink-holes in the Würm Glaciation deposits, subsurface drainage and extent of Triassic limestones in the Sucha Woda Valley, Polish Tatra Mts (West Carpathians). Stud Geol Pol 131:281–289Google Scholar
  30. Blasi C, Di Pietro R, Pelino G (2005) The vegetation of alpine belt karst-tectonic basins in the central Apennines (Italy). Plant Biosyst Int J Dealing Aspects Plant Biol 139(3):357–385Google Scholar
  31. Bobrowsky P, Rutter N (1992) The quaternary geologic history of the Canadian Rocky Mountains. Géog Phys Quatern 46(1):5–50Google Scholar
  32. Bočić N, Faivre S, Kovačić M, Horvatinčić N (2012) Cave development under the influence of Pleistocene glaciation in the Dinarides–an example from Štirovača Ice Cave (Velebit Mt., Croatia). Z Geomorphol 56(4):409–433CrossRefGoogle Scholar
  33. Bočić N, Pahernik M, Mihevc A (2015) Geomorphological significance of the palaeodrainage network on a karst plateau: the Una-Korana plateau, Dinaric karst, Croatia. Geomorphology 247:55–65CrossRefGoogle Scholar
  34. Bodenhamer HG (2007) Preglacial development of caves at structural duplexes on the Lewis Thrust, Glacier National Park, Montana. J Cave Karst Stud 69(3):326–341Google Scholar
  35. Bögli A (1960) Kalklösung und Karrenbildung. Zeitsch f Geomorph N E 2:4–21Google Scholar
  36. Bognar A, Faivre S (2006) Geomorphological traces of the younger Pleistocene glaciation in the central part of the Velebit Mt. Hrvatski geografski glasnik 68(2):19–30CrossRefGoogle Scholar
  37. Bordonau J (1992) Els complexos gla’cio-lacustres relacionats amb el darrer cicle glacial als Pirineus. Geoformaediciones, LogronoGoogle Scholar
  38. Bosák P, Ford DC, Glazek J, Horácek I (eds) (2015) Paleokarst: a systematic and regional review, vol 1. ElsevierGoogle Scholar
  39. Bozkurt E, Mittwede SK (2001) Introduction to the geology of Turkey—a synthesis. Int Geol Rev 43(7):578–594CrossRefGoogle Scholar
  40. Braun DD (1989) Glacial and periglacial erosion of the Appalachians. Geomorphology 2(1–3):233–256CrossRefGoogle Scholar
  41. Butvilovskiy VV (1993) Paleogeografiya poslednego oledeneniya i golotsena Altaya: sobytiyno-katastroficheskaya model (Paleogeography of the last glaciation and the Holocene of Altai: catastrophic event model). Tomsk University, Tomsk, p 253Google Scholar
  42. Calvet M (2004) The Quaternary glaciation of the Pyrenees. In: Quaternary glaciations, extent and chronology, pp 120–128Google Scholar
  43. Calvet M, Delmas M, Gunnell Y, Braucher R, Bourlcs D (2011) Recent advances in research on Quaternary glaciations in the Pyrenees. Quaternary glaciations, extent and chronology, a closer look Part IV. Elsevier, Amsterdam, pp 127–139CrossRefGoogle Scholar
  44. Campbell N (1979) Alpine karst of the Scapegoat-Bob Marshall Wilderness and adjoining areas, North-Central Montana. NSS Bulletin 41:66–69Google Scholar
  45. Carulli GB (2006) Carta Geologica del Friuli venezia Giulia, 1:150,000—Servizio Geologica, FirenzeGoogle Scholar
  46. Cendrero A, Saiz de Omenaca J (1979) Geology of the Picos de Europa; a brief outline. Mem Soc Bot Geneve 1:23–29Google Scholar
  47. Chardon M (1984) Le role des héritages quaternaires dans les karsts alpins: le cas des Alpes du Nord. 1er semester Karst des Alpes occidentales. Karstologia 3:12–14CrossRefGoogle Scholar
  48. Chardon M (1989) Les karsts de l’avant-pays alpin au N des Alpes occidentales. Karstologia 13:21–30CrossRefGoogle Scholar
  49. Chueca J, Peña Monné JL, Lampre F, Julián A (1997) La Pequeña Edad del Hielo en el Pirineo Central y Meridional. Inferencias paleoambientales a partir de datos geomorfológicos. In: Gomez A, Ortiz et Perez A (eds) Las huellas glaciares de las montañas españolas. Universidade de Santiago de Compostela, Spain, pp 307–328Google Scholar
  50. Chueca J, Julián A, Peña-Monné JL (2002) Comparación de la situación de los glaciares del Pirineo español entre el final de la Pequeña Edad del Hielo y la actualidad. Boletín Glaciológico Aragonés 3:13–41Google Scholar
  51. Çılğın Z, Bayrakdar C, Oliphant JS (2014) An example of polygenetic geomorphologic development (Karst-Glacial-Tectonics) on Munzur Mountains: Kepir Cave-Elbaba spring karstic system. J Hum Sci 11(1):89–104CrossRefGoogle Scholar
  52. Çiner A, Sarıkaya MA, Yıldırım C (2015) Late Pleistocene piedmont glaciations in the Eastern Mediterranean; insights from cosmogenic 36Cl dating of hummocky moraines in southern Turkey. Quatern Sci Rev 116:44–56CrossRefGoogle Scholar
  53. Clague JJ, Ward B (2011) Pleistocene Glaciation of British Columbia. In: Ehlers, Gibbard, Hughes (2011) Developments in quaternary sciences, vol 15. Elsevier, pp 563–573Google Scholar
  54. Cohen SM (2013) Geomorphological studies of a karst system in a permafrost environment at Linnédalen, western Spitsbergen. Master’s thesisGoogle Scholar
  55. Cooper M (2014) Verification of post-glacial speleogenesis and the origins of epigene maze caves in New York. M.Sc., dissertation, Mississippi State UniversityGoogle Scholar
  56. Cooper MP, Mylroie JE (2015) Glaciation and speleogenesis. SpringerGoogle Scholar
  57. Costantini EA, Fantappié M, L’Abate G (2013) Climate and pedoclimate of Italy. In: The soils of Italy, Springer, pp 19–37Google Scholar
  58. Coutterand S, Buoncristiani JF (2006) Paléogéographie du dernier maximum glaciaire du Pléistocene recent de la region du massif du Mont Blanc, France. Quaternaire 17(1):35–43CrossRefGoogle Scholar
  59. Cvijić J (1899) Glacijalne i morfološke studije o planinama Bosne, Hercegovine i Crne Gore. Glas Srpske Kraljevske Akademije Nauka, Beograd, vol 57, 196 pGoogle Scholar
  60. Cvijić J (1900) L’époque glaciaire dans la péninsule des Balkans. Annales de Géographie 9:359–372CrossRefGoogle Scholar
  61. Delannoy JJ (1986) Contribution a l’étude des circulations aquifères dans le géosystème Coulmes-Choranche; Présentation du site experimental de la Grotte de Coufin. Revue de Géographie Alpine 74(1–2):83–92CrossRefGoogle Scholar
  62. Delmas M (2009) Chronologie et impact géomorphologique de glaciation quaternaires dans l’est des Pyrénées. Géomorphologie. Université Panthéon-Sorbonne, ParisGoogle Scholar
  63. Dilek Y (2006) Collision tectonics of the Mediterranean region: causes and consequences. Geol Soc Am Spec Pap 409:1–13Google Scholar
  64. Djurović P (2009) Reconstruction of the pleistocene glaciers of Mount Durmitor in Montenegro. Geografski Zbornik/Acta Geographica Slovenica 49(2):263–289CrossRefGoogle Scholar
  65. Djurović P, Petrović A (2007) Large Canyons in Dinaric and Prokletije Mountains Region of Montenegro. Geographica Pannonica 11(1):14–18CrossRefGoogle Scholar
  66. Drew DP (1983) Accelerated soil erosion in a karst area: the Burren, western Ireland. J Hydrol 61(1–3):113–124CrossRefGoogle Scholar
  67. Ducić V, Luković J, Burić D, Stanojević G, Mustafić S (2012) Precipitation extremes in the wettest Mediterranean region (Krivošije) and associated atmospheric circulation types. Nat Hazards Earth Syst Sci 12(3):687–697CrossRefGoogle Scholar
  68. Dyke AS (2004) An outline of North American deglaciation with emphasis on central and northern Canada. Dev Quat Sci 2:373–424Google Scholar
  69. Dyke AS, Andrews JT, Clark PU, England JH, Miller GH, Shaw J, Veillette JJ (2002) The Laurentide and Innuitian ice sheets during the last glacial maximum. Quatern Sci Rev 21(1):9–31CrossRefGoogle Scholar
  70. Ehlers J, Gibbard PL, Hughes PD (eds) (2011) Quaternary glaciations—extent and chronology: a closer look. Elsevier, 1126 pGoogle Scholar
  71. Ekmekci M (2003) Review of Turkish karst with emphasis on tectonic and paleogeographic controls. Acta Carsologica 32(2):205–218Google Scholar
  72. Escobar F (1980) Mapa Geologico de Chile, escala 1/1,000,000 (feuille sud). Servicio Nacional de Geologia y Mineria, Departamento de Geologia General, SantiagoGoogle Scholar
  73. Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun JP, Capitanio FA, Funiciello F, Horváth F, Jolivet L, Piromallo C, Royden L, Rossetti F, Serpelloni E (2014) Mantle dynamics in the Mediterranean. Rev Geophys 52(3):283–332CrossRefGoogle Scholar
  74. Farrant AR, Simms MJ (2011) Ogof Draenen: speleogenesis of a hydrological see-saw from the karst of South Wales. Cave Karst Sci 38(1):31–52Google Scholar
  75. Farrant AR, Smith CJ, Noble SR, Simms MJ, Richards DA (2014) Speleogenetic evidence from Ogof Draenen for a pre-Devensian glaciation in the Brecon Beacons, South Wales, UK. J Quat Sci 29(8):815–826CrossRefGoogle Scholar
  76. Faulkner T (2006) The impact of the deglaciation of central Scandinavia on karst caves and the implications for Craven’s limestone landscape. Re-thinking Craven’s Limestone Landscape, p 4Google Scholar
  77. Finnesand T, Curl RL (2009) Morphology of Tjoarvekrajgge, the longest cave of Scandinavia. In: 15th International congress of speleology proceedings, pp 878–883Google Scholar
  78. Fjeldskaar W, Lindholm C, Dehls JF, Fjeldskaar I (2000) Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quatern Sci Rev 19(14):1413–1422CrossRefGoogle Scholar
  79. Fleming K, Johnston P, Zwartz D, Yokoyama Y, Lambeck K, Chappell J (1998) Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediatefield sites. Earth Planet Sci Lett 163(1–4):327–342CrossRefGoogle Scholar
  80. Ford DC (1971a) Alpine Karst in the Mt. Castleguard-Columbia Icefield Area, Canadian Rocky Mountains. Arct Alp Res 15(4):239–252CrossRefGoogle Scholar
  81. Ford DC (1971b) Alpine Karst in the Mt. Castleguard-Columbia Icefield Area, Canadian Rocky Mountains. Arct Alp Res 239–252Google Scholar
  82. Ford DC (1971c) Characteristics of limestone solution in the southern Rocky Mountains and the Selkirk Mountains, Alberta and British Columbia. Can J Earth Sci 8:585–609CrossRefGoogle Scholar
  83. Ford DC (1979) A review of alpine karst in the southern Rocky Mountains of Canada. NSS Bulletion 41:53–65Google Scholar
  84. Ford DC (1983a) Alpine Karst Systems at Crowsnest Pass, Alberta-British Columbia, Canada. J Hydrol 61(1):187–192CrossRefGoogle Scholar
  85. Ford DC (1983b) Concluding discussion. Arct Alp Res 61(1):551–554CrossRefGoogle Scholar
  86. Ford DC (1983c) The physiography of the Castleguard karst and Columbia icefields area, Alberta, Canada. Arct Alp Res 61(1):427–436CrossRefGoogle Scholar
  87. Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, West Sussex, EnglandCrossRefGoogle Scholar
  88. Ford DC, Smart PL, Ewers RO (1983) The physiography and speleogenesis of Castleguard Cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 61(1):437–450CrossRefGoogle Scholar
  89. Forsythe R, Mpodozis C (1983) Geología del basamento pre-jurasico superior en el archipiélago Madre de Dios, Magallanes, Chile. Servicio Nacional de geologia y Mineria, Chile, Boletin, vol 39, 63 pGoogle Scholar
  90. Gabrielse H (1985) Major dextral transcurrent displacements along the Northern Rocky Mountain Trench and related lineaments in north-central British Columbia. Geol Soc Am Bull 96(1):1–14CrossRefGoogle Scholar
  91. Gachev E, Stoyanov K, Gikov A (2016) Small glaciers on the Balkan Peninsula: State and changes in the last several years. Quatern Int 415:33–54CrossRefGoogle Scholar
  92. Gadek B, Litwin L (1999) Glaciokarst of subalpine and alpine zone of the Mala Laka Valley, Tatra Mts., Poland. Acta Carsologica 28(1):71–86Google Scholar
  93. García-Ruiz JM, Valero-Garcés BL, Beguería S, López-Moreno JI, Martí-Bono C, Serrano-Muela P, Sanjuan Y (2014) The Ordesa and Monte Perdido National Park, Central Pyrenees. Landscapes and landforms of Spain. Springer, Netherlands, pp 165–172CrossRefGoogle Scholar
  94. Garrity CP, Soller DR (2009) Database of the Geologic Map of North America; adapted from the map by Reed JC Jr. and others (2005) U.S. Geological Survey Data Series 424Google Scholar
  95. Gascoyne M, Latham AG, Harmon RS, Ford DC (1983) The antiquity of Castleguard Cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 61(1):463–470CrossRefGoogle Scholar
  96. Gillespie A, Molnar P (1995) Asynchronous maximum advances of mountain and continental glaciers. Rev Geophys 33(3):311–364CrossRefGoogle Scholar
  97. Giraudi C (2005) Middle to Late Holocene glacial variations, periglacial processes and alluvial sedimentation on the higher Apennine massifs (Italy). Quatern Res 64(2):176–184CrossRefGoogle Scholar
  98. Giraudi C (2012) The Campo Felice Late Pleistocene Glaciation (Apennines, central Italy). J Quat Sci 27(4):432–440CrossRefGoogle Scholar
  99. Giraudi C (2015) The Upper Pleistocene deglaciation on the Apennines (Peninsular Italy). Cuadernos de investigación geográfica 41(41):337–358CrossRefGoogle Scholar
  100. Giraudi C, Giaccio B (2015) Middle Pleistocene glaciations in the Apennines, Italy: new chronological data and preservation of the glacial record. Geol Soc Lond Spec Publ 433(1):161–178CrossRefGoogle Scholar
  101. Giraudi C, Bodrato G, Lucchi MR, Cipriani N, Villa IM, Giaccio B, Zuppi GM (2011) Middle and late Pleistocene glaciations in the Campo Felice Basin (central Apennines, Italy). Quatern Res 75(1):219–230CrossRefGoogle Scholar
  102. Godfrey AE (1985) Karst Hydrology of the South Slope of the Uinta Mountains, Utah. Geology and Energy Resources, Uinta Basin of Utah, pp 277–294Google Scholar
  103. Goldie HS (2006) Mature intermediate-scale surface karst landforms in NW England and their relations to glacial erosion. In: Kiss A, Mezősi G, Sümeghy Z (2006) Landscape, environment and society, pp 225–238Google Scholar
  104. Gremaud V, Goldscheider N (2010) Geometry and drainage of a retreating glacier overlying and recharging a karst aquifer, Tsanfleuron-Sanetsch, Swiss Alps. Acta carsologica 39(2):289–300CrossRefGoogle Scholar
  105. Gruber P, Gy Kovács, Sz Somlai (1998) Vertikális karsztformák vizsgálata az ausztriai Totes-Gebirgében. Karsztfejlődés 2:201–210Google Scholar
  106. Grund A (1910) Beiträge zur Geomorphologie des Dinarischen Gebirges. Geographische Abhandlungen 7(H3):121–125Google Scholar
  107. Grunewald K, Scheithauer J (2010) Europe’s southernmost glaciers: response and adaptation to climate change. J Glaciol 56(195):129–142CrossRefGoogle Scholar
  108. Gunn J (2004) Encyclopedia of caves and karst science. Fitzroy Dearborn, New YorkCrossRefGoogle Scholar
  109. Gutak JM (2002) Evolyutsiya devonskikh basseynov sedimentatsii v Gornom Altae, Geologiya Devonskoy sistemy (Evolution of the Devonian sedimentation basins in the Altai Mountains Geology of the Devonian system). Materialy Mezhdunarodnogo simpoziuma, Syktyvkar, Respublika Komi, Rossiya, 9–12 iyulya 2002 g.: pp 18–20Google Scholar
  110. Gutak JM (2015a) Evolyutsiya obstanovok sedimentogeneza v zapadnoy chasti Altae-Sayanskoy skladchatoy oblasti (ASSO) v pozdnem dokembrii-paleozoe, Evolyutsiya osadochnykh protsessov v istorii Zemli (Evolution of sediment genesis environments of in the western part of the Altai-Sayan folded area (ASFA) in the Late Precambrian-Paleozoic. Evolution of sedimentary processes in the Earth’s history). Materialy 8-go Vserossiyskogo litologicheskogo soveshchaniya, Moskva 27–30 oktyabrya 2015 g., Moscow, Gubkin University) vol 1, pp 85–87Google Scholar
  111. Gutak JM (2015b) Paleozoyskie rify zapadnoy chasti Altae-Sayanskoy skladchatoy oblasti (paleotektonicheskie obstanovki obrazovaniya), Geologiya rifov (Paleozoic reefs of the western part of the Altai-Sayan folded area (paleotectonic environment of formation) Geology of reefs). Materialy Vserossiyskogo litologicheskogo soveshchaniya, Syktyvkar, Respublika Komi, Rossiya 15–17 iyunya 2015, pp 38–39Google Scholar
  112. Gutak JM, Batyaeva SK, Lyakhnitskiy VN, Fedak SI (2001) Yurskie otlozheniya Gornogo Altaya, Aktual’nye voprosy geologii i mineragenii yuga Sibiri (Jurassic deposits of the Altai Mountains Actual problems of geology and mineralogy of southern Siberia, Novosibirsk, pp 49–57Google Scholar
  113. Gutak JM, Bagmet GN, Valieva FL, Fedak SI (2004) Dokembriyskie otlozheniya basseyna r. Eskongo (Gornyy Altay), Priroda i ekonomika Kuzbassa (Precambrian sediments of the river Eskongo basin (the Altai Mountains) Nature and the economy of Kuzbass). Novokuznetsk, Geologiya i paleontologiya 9:8–13Google Scholar
  114. Gutak JM, Antonova VA, Bagmet GN, Gabova MF, Savitskiy VR, Tolokonnikova ZA (2008) Ocherki po istoricheskoy geologii Kemerovskoy oblasti (Essays on historical geology of the Kemerovo region). Novokuznetsk, KuzSPA, 132 pGoogle Scholar
  115. Gvozdetskij NA (1981) Karst (Karst). Mysl’, Moscow (214 p)Google Scholar
  116. Gvozdetskij NA, Golubtchikov YN (1987) Gory (Mountains). Mysl’, Moscow (399 p)Google Scholar
  117. Hallet B (1976) Deposits formed by subglacial precipitation of CaCO3. Geol Soc Am Bull 87(7):1003–1015CrossRefGoogle Scholar
  118. Harmon RS (1979) U-series dating of speleothems and a glacial chronology for western North America. NSS Bulletin 41:102–104Google Scholar
  119. Harmon RS, Ford DC, Schwarcz HP (1977) Interglacial chronology of the Rocky and Mackenzie Mountains based upon 230Th–234U dating of calcite speleothems. Can J Earth Sci 14(11):2543–2552CrossRefGoogle Scholar
  120. Hercman H, Bella P, Głazek J, Gradziński M, Lauritzen SE, Løvlie R (1997) Uranium-series dating of speleothems from Demanova Ice Cave: a step to age estimation of the Demanova Cave System (the Nizke Tatry Mts., Slovakia). In: Annales Societatis Geologorum Poloniae, vol 67, no 4, pp 439–450Google Scholar
  121. Hinnov LA (2003) Lofer Cyclothems in the Dachstein Limestone of the Julian Alps. Geol Soc Am Abstr Programs 35(6):426Google Scholar
  122. Horn G (1935) Űber die Bildung von Karsthöhlen unter einem Gletcher. Nor Geogr Tidsskr 5:494–498CrossRefGoogle Scholar
  123. Hughes P (2007) Recent behaviour of the Debeli Namet glacier, Durmitor, Montenegro. Earth Surf Process Land 32(10):1593–1602CrossRefGoogle Scholar
  124. Hughes P (2008) Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geogr Ann: Ser A, Phys Geogr 90(4):259–267CrossRefGoogle Scholar
  125. Hughes PD, Woodward JC (2017) Quaternary Glaciation in the Mediterranean Mountains: a new synthesis. Geol Soc Lond Spec Publ 433:1–23CrossRefGoogle Scholar
  126. Hughes PD, Gibbard PL, Woodward JC (2003) Relict rock glaciers as indicators of Mediterranean palaeoclimate during the Last Glacial Maximum(Late Wuermian) in northwest Greece. J Quat Sci 18(5):431–440CrossRefGoogle Scholar
  127. Hughes PD, Woodward JC, Gibbard PL, Macklin MG, Gilmour MA, Smith GR (2006) The glacial history of the Pindus Mountains, Greece. J Geol 114(4):413–434CrossRefGoogle Scholar
  128. Hughes PD, Gibbard PL, Woodward JC (2007) Geological controls on Pleistocene glaciation and Cirque form in Greece. Geomorphology 88(3):242–253CrossRefGoogle Scholar
  129. Hughes PD, Woodward JC, Van Calsteren PC, Thomas LE, Adamson KR (2010) Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quatern Sci Rev 29(27):3690–3708CrossRefGoogle Scholar
  130. Hughes PD, Woodward JC, Van Calsteren PC, Thomas LE (2011) The glacial history of the Dinaric Alps, Montenegro. Quatern Sci Rev 30(23):3393–3412CrossRefGoogle Scholar
  131. Hulton N, Sugden D, Payne A, Clapperton C (1994) Glacier modeling and the climate of Patagonia during the last glacial maximum. Quatern Res 42(1):1–19CrossRefGoogle Scholar
  132. Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Maraldo L, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2013) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34(5):1657–1675CrossRefGoogle Scholar
  133. Ivy-Ochs S, Kerschner H, Reuther A, Preusser F, Heine K, Maisch M, Kubik PW, Schlüchter C (2008) Chronology of the last glacial cycle in the European Alps. J Quat Sci 23(6–7):559–573CrossRefGoogle Scholar
  134. Jaillet S, Lans B, Maire R, Tourte B, L’équipe Ultima Patagonia-2006 (2008) Héritage glaciaire et karstification de l’archipel calcaire de Madre de Dios - Patagonie, Chili. Actes colloque AFK, Sion, Edytem, Cahiers de géographie, vol 7, pp 39–50Google Scholar
  135. Jin S, Tian X, Feng G (2016) Recent glacier changes in the Tien Shan observed by satellite gravity measurements. Glob Planet Change 143:81–87CrossRefGoogle Scholar
  136. Jurewicz E (2005) Geodynamic evolution of the Tatra Mts. and the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geol Pol 55(3):295–338Google Scholar
  137. Kalesnik SV (1935) Ledniki verkhovev Bol’shogo Naryna, Tjan’ Shan’ (Glaciers of the upper Big Naryn, Tian Shan). Trudy lednokovykh epspeditsij 2:83–186Google Scholar
  138. Karpunin AM, Mamonov SV, Mironenko OA, Sokolov AR (1998) Geologicheskie pamyatniki prirody Rossii: K 300-letiyu gorno-geologicheskoy. sluzhby Rossii, 1700–2000 (Russian geological sites. 300th anniversary of Russian Mining and Geological Service, 1700–2000). S-Petersburg, 200 pGoogle Scholar
  139. Khromova T, Nosenko G, Kutuzov S, Muraviev A, Chernova L (2014) Glacier area changes in Northern Eurasia. Environ Res Lett 9:015003CrossRefGoogle Scholar
  140. King PB (2015) Evolution of North America. Princeton University PressGoogle Scholar
  141. Klimchouk A, Nazik L, Bayari S, Tork K, Kasjan Y (2004) Kuzgun Cave and its Context: the first super-deep cave in the Aladaglar Massif, TurkeyGoogle Scholar
  142. Klimchouk A, Bayari S, Nazik L, Törk K (2006) Glacial destruction of cave systems in high mountains, with a special reference to the Aladaglar massif, Central Taurus, Turkey. Acta Carsologica 35(2):111–121Google Scholar
  143. Klimchouk AB, Samokhin GV, Kasian Y (2009) The deepest cave in the world in the Arabika massif (Western Caucasus) and its hydrogeological and paleogeographic significance. In: Proceedings of 15th international congress of Kerrville, Texas, pp 898–905Google Scholar
  144. Kostin PA (1966) Karst Peredovogo khrebta i polosy kuest Severo-Zapadnogo Kavkaza (Karst of the Peredovoj Range of the stripe of cuestas of the Northwestern Caucasus). Moscow, 25 pGoogle Scholar
  145. Kotarba A, Hercman H, Dramis F (2001) On the age of Campo Imperatore glaciations, Gran Sasso Massif, Central Italy. Geogr Fis Dinam Quat 24:65–69Google Scholar
  146. Kranjc A (2006) Some large dolines in the Dinaric karst. Speleogenesis Evol Karst Aquifers 4(1):1–4Google Scholar
  147. Krasnaya kniga Altayskogo kraya (2009) Osobo okhranyaemye prirodnye territorii (The Red Book of the Altai Territory. Protected areas), Barnaul (273 p)Google Scholar
  148. Křížek M, Mida P (2013) The influence of aspect and altitude on the size, shape and spatial distribution of glacial cirques in the High Tatras (Slovakia, Poland). Geomorphology 198:57–68CrossRefGoogle Scholar
  149. Kuhlemann J, Milivojevic M, Krumrei I, Kubik PW (2009) Last glaciation of the Šara range (Balkan peninsula): increasing dryness from the LGM to the Holocene. Austrian J Earth Sci 102(1):146–158Google Scholar
  150. Kuhlemann J, Gachev E, Gikov A, Nedkov S, Krumrei I, Kubik P (2013) Glaciation in the Rila Mountains (Bulgaria) during the last glacial maximum. Quatern Int 293:51–62CrossRefGoogle Scholar
  151. Kunaver J (1983) Geomorphology of the Kanin Mountains with special regard to the glaciokarst. Geografski zbornik 22:201–344Google Scholar
  152. Kurter A (1991) Glaciers of Turkey. Satellite image atlas of glaciers of the world, US Geological Survey Washington, G1-G30Google Scholar
  153. Lambán LJ, Jódar J, Custodio E, Soler A, Sapriza G, Soto R (2015) Isotopic and hydrogeochemical characterization of high-altitude karst aquifers in complex geological settings. The Ordesa and Monte Perdido National Park (Northern Spain) case study. Sci Total Environ 506:466–479CrossRefGoogle Scholar
  154. Lambeck K (1995) Late Pleistocene and Holocene sea-level change in Greece and south-western Turkey: a separation of eustatic, isostatic and tectonic contributions. Geophys J Int 122(3):1022–1044CrossRefGoogle Scholar
  155. Lauritzen SE (1984) A symposium: arctic and alpine karst. Nor Geogr Tidsskr-Norw J Geogr 38(3–4):139–143CrossRefGoogle Scholar
  156. Lauritzen SE (1986) Kvithola at Fauske; Northern Norway: an example of ice-contact speleogenesis. Nor Geol Tidsskr 66(2):153–161Google Scholar
  157. Lauritzen SE (2005) Quaternary speleogenesis and landscape evolution in Scandinavia and Svalbard. In: 14th International congressof speleology, Athen, vol O-64, pp 1–4Google Scholar
  158. Lauritzen SE (2006) Caves and speleogenesis at Blomstrandsøya, Kongsfjord, W. Spitsbergen. Int J Speleol 35(1):37–58CrossRefGoogle Scholar
  159. Lauritzen SE, Gascoyne M (1980) The first radiometric dating of Norwegian stalagmites–Evidence of pre-Weichselian karst caves. Nor Geogr Tidsskr 34:77–82CrossRefGoogle Scholar
  160. Lauritzen SE, Mylroie JE (2000) Results of a speleothem U/Th dating reconnaissance from the Helderberg Plateau, New York. J Cave Karst Stud 62(1):20–26Google Scholar
  161. Lauritzen SE, Skoglund RØ (2013) Glacier ice-contact speleogenesis. Treatise Geomorphol 6:363–396CrossRefGoogle Scholar
  162. Leonard EM (1989) Climatic change in the Colorado Rocky Mountains: estimates based on modern climate at late Pleistocene equilibrium lines. Arct Alp Res 245–255Google Scholar
  163. Lepirica A (2008) Geomorphological characteristics of the massif Prenj. Acta Carsologica 37(2–3):307–329Google Scholar
  164. Lindner L, Dzierżek J, Marciniak B, Nitychoruk J (2003) Outline of Quaternary glaciations in the Tatra Mountains: their development, age and limits. Geol Q 47(3):269–280Google Scholar
  165. Lindner L, Dzierżek J, Marciniak B, Nitychoruk J (2010) Outline of Quaternary glaciations in the Tatra Mts.: their development, age and limits. Geol Q 47(3):269–280Google Scholar
  166. Litwin L, Andreychouk V (2008) Characteristics of high-mountain karst based on GIS and remote sensing. Environ Geol 54:979–994CrossRefGoogle Scholar
  167. Lóczy D, Stankoviansky M, Kotarba A (eds) (2012) Recent landform evolution: the Carpatho-Balkan-Dinaric region. SpringerGoogle Scholar
  168. Lozovoj SP (1984) Lagonakskoe nagor’e (Lagonaki Highland). Krasnodarskoe knizhnoe izdatel’stvo, Krasnodar, p 160Google Scholar
  169. Maire R (1990) La haute montagne calcaire: karsts, cavités, remplissages, paléoclimats, Quaternaire. Thèse d’Etat, Univ. de Nice, Karstologia-mémoires 3, La Ravoire, 731 pGoogle Scholar
  170. Maire R (1999) Les glaciers de marbre de Patagonie, Chili. Un karst subpolaire océanique de la zone australe. Karstologia 33:25–40Google Scholar
  171. Makos M, Nitychoruk J, Zreda M (2013) Deglaciation chronology and paleoclimate of the Pięciu Stawów Polskich/Roztoki Valley, high Tatra Mountains, Western Carpathians, since the Last Glacial Maximum, inferred from 36Cl exposure dating and glacier–climate modelling. Quatern Int 293:63–78CrossRefGoogle Scholar
  172. Makos M, Dzierżek J, Nitychoruk J, Zreda M (2014) Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum. Quatern Res 82(1):1–13CrossRefGoogle Scholar
  173. Mangerud J, Gyllencreutz R, Lohne Ö, Svendsen JI (2011) Glacial history of Norway. In: Ehlers J, Gibbard PL, Hughes PD (2011) Quaternary glaciations-extent and chronology: a closer look. ElsevierGoogle Scholar
  174. Marjanac L, Marjanac T (2004) Glacial history of the Croatian Adriatic and coastal Dinarides. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations. Developments in quaternary science, vol 2, pp 19–26Google Scholar
  175. Marjanac T, Marjanac L (2016) The extent of middle Pleistocene ice cap in the coastal Dinaric Mountains of Croatia. Quatern Res 85(3):445–455CrossRefGoogle Scholar
  176. Martí Bono C, García-Ruiz J (eds) (1994) El Glaciarismo surpirenaico: nuevas aportaciones. Geoforma Ediciones, Logroño, p 142Google Scholar
  177. Martinetto E, Ravazzi C (1997) Plant biochronology of the Valle della Fornace succession (Varese) based on the Plio-Pleistocene record in northern Italy. Geologia Insubrica 2(2):81–98Google Scholar
  178. Maslyn RM, Davis DG (1979) Karst development on the White River Plateau, Colorado. NSS Bulletin 41:95–101Google Scholar
  179. Mavlyudov BR (2004) Lednikovyj karst (Glacial karst). In: Karstovedenie – XXI vek: teoretitcheskoe i praktitcheskope znatchenie, 25–30 May 2004. Perm’, pp 69–74Google Scholar
  180. McMillan ME, Heller PL, Wing SL (2006) History and causes of post-Laramide relief in the Rocky Mountain orogenic plateau. Geol Soc Am Bull 118(3–4):393–405CrossRefGoogle Scholar
  181. Medville DM, Hempel JC, Plantz C, Werner E (1979) Solutional landforms on carbonates of the Southern Teton Range Wyoming. NSS Bulletin 41:70–79Google Scholar
  182. Menkovic L, Markovic M, Cupkovic T, Pavlovic R, Trivic B, Banjac N (2004) Glacial morphology of Serbia, with comments on the Pleistocene Glaciation of Monte Negro, Macedonia and Albania. Dev Quat Sci 2:379–384Google Scholar
  183. Mercer JH (1976) Glacial history of southern most South America. Quatern Res 6:125–166CrossRefGoogle Scholar
  184. Merritt JW, Auton CA, Connell ER, Hall AM, Peacock JD (2003) Cainozoic geology and landscape evolution of north-east Scotland. British Geological Survey, EdinburghGoogle Scholar
  185. Mihevc A, Prelovšek M, Hajna NZ (eds.) (2010) Introduction to the Dinaric karst. Inštitut za raziskovanje krasa ZRC SAZU, 71 pGoogle Scholar
  186. Milivojević M (2007) Glacial relief of Mts. Volujak, Bioć and Maglić. Geogr Inst Jovan Cvijić Spec Issue 68:1–132Google Scholar
  187. Milivojević M, Menković L, Ćalić J (2008) Pleistocene glacial relief of the central part of Mt. Prokletije (Albanian Alps). Quatern Int 190(1):112–122CrossRefGoogle Scholar
  188. Miotke FD (1968) Karstmorphologische Studien in der glacial-überformten Höhenstufe der Picos de Europa, Nordspanien. Selbtverlag der Geografhischen Gessesllschaft Hannover, p 4Google Scholar
  189. Moles NR, Moles RT (2002) Influence of geology, glacial processes and land use on soil composition and Quaternary landscape evolution in The Burren National Park, Ireland. Catena 47(4):291–321CrossRefGoogle Scholar
  190. Montserrat-Martí JM (1992) Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: estudio palinológico. Monografías del Instituto Pirenaico de Ecología 6:1–147Google Scholar
  191. Munroe JS (2006) Investigating the spatial distribution of summit flats in the Uinta Mountains of northeastern Utah, USA. Geomorphology 75(3):437–449CrossRefGoogle Scholar
  192. Murphy P, Westerman AR, Clark R, Booth A, Parr A (2008) Enhancing understanding of breakdown and collapse in the Yorkshire Dales using ground penetrating radar on cave sediments. Eng Geol 99(3):160–168CrossRefGoogle Scholar
  193. Murphy PJ, Faulkner TL, Lord TC, Thorp JA (2015) The caves of Giggleswick Scar-examples of deglacial speleogenesis? Cave and Karst Science 42(1):42–53Google Scholar
  194. Orvošová M, Deininger M, Milovský R (2014) Permafrost occurrence during the Last Permafrost Maximum in the Western Carpathian Mountains of Slovakia as inferred from cryogenic cave carbonate. Boreas 43(3):750–758CrossRefGoogle Scholar
  195. Oxaal L (1914) Kalkstenshuler i Ranen. Norg Geol Unders 69:1–47Google Scholar
  196. Øystese A, Johannesen F, Lauritzen SE (2005) Speleogenesis and landscape evolution in Tromsdalen karst, Verdal, Norway. In: 14th international congressof speleology, Athen, vol P-14, pp 1–2Google Scholar
  197. Pallás R, Rodés A, Braucher R, Carcaillet J, Ortuno M, Bordonau J, Bourlcs D, Vilaplana JM, Masana E, Santanach P (2006) Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south-central Pyrenees. Quatern Sci Rev 25(21–22):2937–2963CrossRefGoogle Scholar
  198. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21CrossRefGoogle Scholar
  199. Palmer AN (2003) Speleogenesis in carbonate rocks. Speleogenesis Evol Karst Aquifers 1(1):2–11Google Scholar
  200. Pamić J, Gušić I, Jelaska V (1998) Geodynamic evolution of the Central Dinarides. Tectonophysics 297(1):251–268CrossRefGoogle Scholar
  201. Panov DV (1993) Evoljutsija sovremennogo oledenenija Kavkaza (Evolution of the modern glaciation of the Caucasus). Sankt-Peterburg, Gidrometeoizdat, 432 pp. (in Russian)Google Scholar
  202. Penck A (1885) La Période glaciaire dans les Pyrénées. Bulletin de la Societe d’histoire naturelle de Toulouse 19:105–200Google Scholar
  203. Penck A, Brückner E (1901–1909) Die Alpen im Eiszeitalter, Christian-Herman Tauchnitz, Leipzig 1199 pGoogle Scholar
  204. Petrović AS (2014) A Reconstruction of the Pleistocene Glacial Maximum in the Žijovo Range (Prokletije Mountains, Montenegro). Geografski Zbornik/Acta Geographica Slovenica 54(2)Google Scholar
  205. Piccini L, Zanchetta G, Drysdale RN, Hellstrom J, Isola I, Fallick AE, Leone G, Doveri M, Mussi M, Mantelli F, Molli G, Lotti L, Roncioni A, Regattieri E, Meccheri M, Vaselli L (2008) The environmental features of the Monte Corchia cave system (Apuan Alps, central Italy) and their effects on speleothem growth. Int J Speleol 37(3):153–172CrossRefGoogle Scholar
  206. Pierce KL (2003) Pleistocene glaciations of the Rocky Mountains. Dev Quat Sci 1:63–76Google Scholar
  207. Pope RJ, Hughes PD, Skourtsos E (2015) Glacial history of Mt Chelmos, Peloponnesus, Greece. Geol Soc Lond Spec Publ 433(1):211–236CrossRefGoogle Scholar
  208. Pulina M (1974) Preliminary studies on denudation in SW Spitsbergen. Bulletin de l’Academie Polonaise des Sciences-Serie des Sciences de la Terre 22(2):83–89Google Scholar
  209. Quinif Y, Maire R (1998) Pleistocene deposits in Pierre Saint-Martin cave, French Pyrenees. Quatern Res 49:37–50CrossRefGoogle Scholar
  210. Ridge JC (2004) The Quaternary glaciation of western New England with correlations to surrounding areas. Dev Quat Sci 2:169–199Google Scholar
  211. Ridush BT (1993) Petschera Syjkyrduu na Vostotchnom Pamire (The Syjkyrduu Cave in the Eastern Pamir). Svet 1–2:5–9Google Scholar
  212. Rodríguez-Rodríguez L, Jiménez-Sánchez M, Domínguez-Cuesta MJ, Aranburu A (2014) Research history on glacial geomorphology and geochronology of the Cantabrian Mountains, North Iberia (43–42°N/7–2°W). Quatern Int 364:6–21CrossRefGoogle Scholar
  213. Ruban DA (2013) The Greater Caucasus—a Galatian or Hanseatic terrane? Comment on “The formation of Pangea” by G.M. Stampfli, C. Hochard, C. Verard, C. Wilhem and J. von Raumer (Tectonophysics 593 (2013) 1-19). Tectonophysics 608:1442–1444CrossRefGoogle Scholar
  214. Ruban DA, Al-Husseini MI, Iwasaki Y (2007) Review of Middle east Paleozoic plate tectonics. GeoArabia 12:35–56Google Scholar
  215. Rudoy AN (2005) Gigantskaya ryab’ techeniya, istoriya issledovaniy, diagnostika, paleogeograficheskoe znachenie (Giant stream ripple, history of research, diagnostics, paleogeographic value). Tomsk, 224 pGoogle Scholar
  216. Salvigsen O, Elgersma A (1985) Large-scale karst features and open taliks at Vardeborgsletta, outer Isfjorden, Svalbard. Polar Res 3(2):145–153CrossRefGoogle Scholar
  217. Sarıkaya MA, Zreda M, Çiner A, Zweck C (2008) Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quatern Sci Rev 27(7):769–780CrossRefGoogle Scholar
  218. Sarıkaya MA, Ciner A, Zreda M (2011) Quaternary glaciations of Turkey. Dev Quat Sci 15:393–403Google Scholar
  219. Sarıkaya MA, Çiner A, Haybat H, Zreda M (2014) An early advance of glaciers on Mount Akdağ, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides and glacier modeling. Quatern Sci Rev 88:96–109CrossRefGoogle Scholar
  220. Schoenbohm LM, Chen J, Stutz J, Sobel ER, Thiede RC, Kirby B, Strecker MR (2014) Glacial morphology in the Chinese Pamir: Connections among climate, erosion, topography, lithology and exhumation. Geomorphology 221:1–17CrossRefGoogle Scholar
  221. Schroeder J, Ford DC (1983) Clastic sediments in Castleguard Cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 61(1):451–461CrossRefGoogle Scholar
  222. Seefeldner E (1961) Salzburg und seine Landschaften. Eine geographische Landeskunde. Salzburg/Stuttgart, Das Bergland-Buch, 573 pGoogle Scholar
  223. Sejrup HP, Hjelstuen BO, Dahlgren KT, Haflidason H, Kuijpers A, Nygård A, Praeg D, Stoker MS, Vorren TO (2005) Pleistocene glacial history of the NW European continental margin. Mar Pet Geol 22(9):1111–1129CrossRefGoogle Scholar
  224. Serrano E, González-Trueba JJ, González-García M (2012) Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quatern Res 78:303–314CrossRefGoogle Scholar
  225. Serrano E, Gomez-Lende M, Gonzalez-Trueba JJ, Turu V, Ros S (2013) Fluctuaciones glaciares pleistocenas en las Monta ~ nas Pasiegas (Cordillera Cantabrica). Cuaternario y Geomorfología 27:91–110Google Scholar
  226. Skoglund RØ, Lauritzen SE (2010) Morphology and speleogenesis of Okshola (Fauske, northern Norway): example of a multi-stage network cave in a glacial landscape. Norw J Geol 90:123–137Google Scholar
  227. Skoglund RØ, Lauritzen SE (2011) Subglacial maze origin in low-dip marble stripe karst: examples from Norway. J Cave Karst Stud 73(1):31–43CrossRefGoogle Scholar
  228. Skoglund RØ, Lauritzen SE (2013) Characterisation of a post-glacial invasion aquifer: the Grønli-Seter karst system, northern Norway. Norw J Geol 93(1):61–73Google Scholar
  229. Skoglund RØ, Lauritzen SE, Gabrovšek F (2010) The impact of glacier ice-contact and subglacial hydrochemistry on evolution of maze caves: a modelling approach. J Hydrol 388(1):157–172CrossRefGoogle Scholar
  230. Smart CC (1983) The hydrology of the castleguard karst, columbia icefields, Alberta, Canada. Arct Alp Res 61(1):471–486CrossRefGoogle Scholar
  231. Smart PL (1986) Origin and development of glaciokarst closed depressions in the Picos de Europa, Spain. Z Geomorphol 30:423–443Google Scholar
  232. Smith GW, Nance RD, Genes AN (2006) Pleistocene glacial history of Mount Olympus, Greece: Neotectonic uplift, equilibrium line elevations, and implications for climatic change. Geol Soc Am Spec Pap 409:157–174Google Scholar
  233. Solomina O, Bushueva I, Dolgova E, Jomelli V, Alexandrin M, Mikhalenko V, Matskovsky V (2016) Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Glob Planet Change 140:28–58CrossRefGoogle Scholar
  234. Spangler LE (2001) Delineation of recharge areas for karst springs in Logan Canyon, Bear River Range, northern Utah. In: US Geological Survey Karst Interest Group Proceedings. Water-Resources Investigations Report, 01-4011Google Scholar
  235. Stea RR (2004) The Appalachian glacier complex in maritime Canada. Dev Quat Sci 2:213–232Google Scholar
  236. Stepišnik U, Žebre M (2011) Glaciokras Lovčena, E-Geograff 2. Univerza v Ljubljani, Filozofska faklulteta, LjubljanaGoogle Scholar
  237. Stepišnik U, Ferk M, Kodelja B, Medenjak G, Mihevc A, Natek K, Žebre M (2009) Glaciokarst of western Orjen, Montenegro. Cave Karst Sci 36(1):21–28Google Scholar
  238. Stepišnik U, Grlj A, Radoš D, Žebre M. (2016) Geomorphology of Blidinje, Dinaric Alps (Bosnia and Herzegovina). J Maps 12(sup1):163–171Google Scholar
  239. Stokes CR, Gurney SD, Shahgedanova M, Popovnin V (2006) Late-20th-century changes in glacier extent in the Caucasus Mountains, Russia/Georgia. J Glaciol 52:99–109CrossRefGoogle Scholar
  240. Sturchio NC, Pierce KL, Murrell MT, Sorey ML (1994) Uranium-series ages of travertines and timing of the last glaciation in the northern Yellowstone area, Wyoming-Montana. Quatern Res 41(3):265–277CrossRefGoogle Scholar
  241. Styllas MN, Schimmelpfennig I, Ghilardi M, Benedetti L (2015) Geomorphologic and paleoclimatic evidence of Holocene glaciation on Mount Olympus, Greece. The Holocene 26(5):709–721CrossRefGoogle Scholar
  242. Sugden DE, Bentley MJ, Fogwill CJ, Hulton NRJ, McCulloch RD, Purves RS (2005) Late-glacial events in Southernmost South America: a blend of “Northern” and “Southern” hemispheric climatic signals? Geogr Ann Ser A Phys Geogr 87(2):273–288Google Scholar
  243. Svendsen JI, Mangerud J (1987) Late Weichselian and Holocene sea-level history for a cross-section of western Norway. J Quat Sci 2(2):113–132CrossRefGoogle Scholar
  244. Szczygieł J (2015) Cave development in an uplifting fold-and-thrust belt: case study of the Tatra Mountains, Poland. Int J Speleol 44(3):341–359CrossRefGoogle Scholar
  245. Szczygieł J, Gaidzik K, Kicińska D (2015) Tectonic control of cave development: a case study of the Bystra Valley in the Tatra Mts., Poland. Ann Soc Geol Pol 85(2):387–404Google Scholar
  246. Szulc-Rojan E (1995) The contemporary glaciers of Pamirs. Czasopismo Geograficzne 66:303–315Google Scholar
  247. Taillefer F (1963) La carte de Morphologie glaciaire des Pyrénées au 1/50,000, Feuilles de Foix et de Vicdessos. Revue Géographique des Pyrénées et du Sud-Ouest 34:5–10Google Scholar
  248. Taillefer F (1964) Glaciaire pyrénéen: versant nord et versant sud. R.G.P.S.O. 28(3):221–243Google Scholar
  249. Taillefer F (1969) Les Glaciations des Pyrénnées. In: Actes 8ème congrès international INQUA, Supplément du Bulletin de l’Association Française pour l’Etude du Quaternaire, pp 19–32Google Scholar
  250. Taillefer F (1977) Le glacier de l’Aričge dans le bassin de Tarascon. Revue Géographique des Pyrénées et du SudOuest 48:269–286CrossRefGoogle Scholar
  251. Taillefer F (1985) Idées actuelles sur les glaciations dans les Pyrénées de l’Ariège. Revue Géographique des Pyrénées et du Sud-Ouest 56:323–338CrossRefGoogle Scholar
  252. Talour B (1976) Hydrogéologie karstique du Massif du Grand Som (Chartreuse, Isere) – Grenoble. Institut de Géologie, These de 3eme cycle, 166 pGoogle Scholar
  253. Tawadros E, Ruban D, Efendiyeva M (2006) Evolution of NE Africa and the Greater Caucasus: common patterns and petroleum potential. In: The Canadian Society of Petroleum Geologists, the Canadian Society of Exploration Geophysicists, the Canadian Well Logging Society Joint Convention, 15–18 May 2006. Calgary, pp 531–538Google Scholar
  254. Telbisz T (2010a) Morphology and GIS-analysis of closed depressions in Sinjajevina Mts (Montenegro). Karst Dev 1(1):41–47Google Scholar
  255. Telbisz T (2010b) Glacio-karst features of the Sinjajevina Mts (Montenegro): an overview and DEM-analysis. Karst Dev 1(1):17–22Google Scholar
  256. Telbisz T, Dragušica H, Nagy B (2009) Doline Morphometric Analysis and Karst Morphology of Biokovo Mt (Croatia) Based on Field Observations and Digital Terrain Analysis. Croat Geogr Bull 71(2):5–22Google Scholar
  257. Telbisz T, Mari L, Szabó L (2011) Geomorphological characteristics of the Italian side of Canin massif (Julian Alps) using digital terrain analysis and field observations. Acta Carsologica 40(2):255–266CrossRefGoogle Scholar
  258. Tóth G (2003) Karrenmorphologische Forschungen im Dachstein und im Toten-Gebirge. Gmundner Geo-Studien 2, Beiträge zur Geologie des Salzkammerguts, pp 191–198Google Scholar
  259. Tóth G (2004) Karrenmorphologische Forschungen im Dachstein und im Toten-Gebirge. In: Weidinger JT, Lobitzer H, Spitzbart I. Beiträge zur Geologie des Salzkammerguts, Gmundner Geo-Studien 2. Erkudok-Institut; Museum Gmunden, Gmunden, pp 191–198Google Scholar
  260. Tóth G (2008) Une nouvelle approche du systeme des lapiés alpins nus. Karsts de montagne. Géomorphologie, patrimoine et ressource. Chambéry, Université de Savoie, pp 147–156Google Scholar
  261. Tóth G (2009) Karren features in the Dachstein mountain. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features: Karren sculpturing. Postojna, Ljubljana, Zalozba ZRC, pp 313–322Google Scholar
  262. Tóth G, Reynard E (2011) Developpement et spécificités des cellules lapiazées sur Lapiaz de Tsanfleuron (Alpes Bernoises, Suisse). Z Geomorphol 55(2):231–245CrossRefGoogle Scholar
  263. Tronov MV (1948) Ocherki oledeneniya Altaya (Glaciers and climate). Gidrometeoizdat, Leningrad (407 p)Google Scholar
  264. Tronov MV (1966) Ledniki i klimat (Essays on Altai glaciation). Geografiz, Moscow (376 p)Google Scholar
  265. Turkin YA, Fedak SI (2008) Geologiya i veshchestvennye kompleksy Gornogo Altaya (Geology and compositional complexes of the Altai Mountains). Tomsk, 460 pGoogle Scholar
  266. Uggeri A, Felber M, Bini A, Bignasca C, Ravazzi C (1994) La successione della Val Fornace, I depositi Plio-Quaternari e l’evoluzione del territorio varesino, Milano, pp 63–92Google Scholar
  267. Uggeri A, Felber M, Bini A, Ravazzi C, Bignasca C, Heller F (1995) Pliocene-Pleistocene environmental evolution in the Varese region (NW Lombardia, Northern Italy): evidence of a Pliocene glaciation. In: Abstracts XIV international congress INQUA, Berlin, Terra Nostra, 2/95, 280 pGoogle Scholar
  268. Urdea P (2004) The Pleistocene glaciation of the Romanian Carpathians. Dev Quat Sci 2:301–308Google Scholar
  269. van der Meer JJ, van Tatenhove FG (1992) Drumlins in a full alpine setting: some examples from Switzerland. Geomorphology 6(1):59–67CrossRefGoogle Scholar
  270. Van Husen D (2000) Geological processes during the Quaternary. Mitt Österr Geol Ges 92:135–156Google Scholar
  271. Velić J, Velić I, Kljajo D (2011) Sedimentary bodies, forms and occurrences in the Tudorevo and Mirovo glacial deposits of northern Velebit (Croatia). Geologia Croatica 64(1):1–16CrossRefGoogle Scholar
  272. Veress M (2010) Karst environments: Karren formation in high mountains. Springer, Netherlands, p 230CrossRefGoogle Scholar
  273. Veress M (2016a) Covered karsts. Springer, Dordrecht, p 536CrossRefGoogle Scholar
  274. Veress M (2016b) Postglacial evolution of paleodepressions in glaciokarst areas of the Alps and Dinarides. Z Geomorphol 60(4):343–358CrossRefGoogle Scholar
  275. Veress M (2017) Solution doline development on glaciokarst in alpine and dinaric areas. Earth-Sci Rev 173:31–48CrossRefGoogle Scholar
  276. Veress M, Tóth G, Zentai Z, Czöpek I (2003) Vitesse de recul d’un escarpement lapiazé (Ile Diego de Almagra, Patagonia, Chili). Karstologia 41(1):23–26Google Scholar
  277. Veress M, Szunyogh G, Zentai Z, Tóth G, Czöpek I (2006) The effect of wind on karren formation on the Island of Diego de Almagra (Chile). Z Geomorphol 50(4):425–445Google Scholar
  278. Veress M, Zentai Z, Péntek K, Döbröntei L (2014) A Léna pillérei. Földrajzi Közlemények 138(1):17–36Google Scholar
  279. Vilaplana JM, Montserrat J, Schlüchter C (1989) Recent progress in Quaternary stratigraphy: the Lake Llauset séquence in the Spanish Pyrenees. In: Rose J, Schlüchter C (eds) Quaternary type sections: imagination or reality?. Balkema, Rotterdam, pp 113–124Google Scholar
  280. Viles HA (2003) Conceptual modelling of the impacts of climate change on karst geomorphology in the UK and Ireland. J Nat Conserv 11(1):59–66CrossRefGoogle Scholar
  281. Vlahović I, Tišljar J, Velić I, Matičec D (2005) Evolution of the Adriatic carbonate platform: palaeogeography, main events and depositional dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 220(3):333–360CrossRefGoogle Scholar
  282. Waltham AC (1978) The caves and karst of Astraka, Greece. Trans Br Cave Res Assoc 5:1–12Google Scholar
  283. Waltham T, Lowe D (eds) (2013) Caves and Karst of the Yorkshire Dales, vol 1. British Cave Research Association, Buxton, 264 pGoogle Scholar
  284. Waltham AC, Simms MJ, Farrant AR, Goldie HS (1997) Karst and caves of Great Britain. In: Geological conservation review, vol 12, 358 pGoogle Scholar
  285. Washburn AL (1979) A survey of periglacial processes and environments. Geocryology, 406 pGoogle Scholar
  286. Weary DJ (2008) Preliminary Map of potentially karstic carbonate rocks in the central and southern Appalachian states, No. 2008-1154, Geological Survey (US)Google Scholar
  287. Weingartner H (1983) Geomorphologische Studien im Tennengebirge. Im Selbstverlag des Institutes für Geographie der Universität Salzburg, 196 pGoogle Scholar
  288. Weremeichik JM, Mylroie JE (2014) Glacial Lake Schoharie: an investigative study of glaciolacustrine lithofacies in caves, Helderberg Plateau, Central New York. J Cave Karst Stud 76(2):127–138CrossRefGoogle Scholar
  289. Werner E (1979) Alpine karst in the Rocky Mountains—introduction to the symposium. NSS Bulletin 41:51–52Google Scholar
  290. White WB (1979) Karst landforms in the Wasatch and Uinta Mountains, Utah. NSS Bulletin 41:80–88Google Scholar
  291. Williams PW (1966) Limestone pavements with special reference to western Ireland. Trans Inst Br Geogr 155–172Google Scholar
  292. Wilson JR (1979) Glaciokarst in the Bear River Range, Utah. NSS Bulletin 41:89–94Google Scholar
  293. Wilson P, Lord T, Rodés Á (2013) Deglaciation of the eastern Cumbria glaciokarst, northwest England, as determined by cosmogenic nuclide (10Be) surface exposure dating, and the pattern and significance of subsequent environmental changes. Cave Karst Sci 40(1):22–27Google Scholar
  294. Woodward JC, Hamlin RHB, Macklin MG, Hughes PD, Lewin J (2008) Glacial activity and catchment dynamics in northwest Greece: long-term river behaviour and the slackwater sediment record for the last glacial to interglacial transition. Geomorphology 101(1):44–67CrossRefGoogle Scholar
  295. Yilmaz Y, Tüysüz O, Yigitbas E, Can Genç S, Sengör AMC (1998) Geology and tectonic evolution of the Pontides. Memoirs-American Association of Petroleum Geologists, pp 183–226Google Scholar
  296. Žák K, Hercman H, Orvošová M, Jačková I (2009) Cryogenic cave carbonates from the Cold Wind Cave, Nízke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian. Int J Speleol 38(2):139–152CrossRefGoogle Scholar
  297. Žák K, Richter DK, Filippi M, Živor R, Deininger M, Mangini A, Scholz D (2012) Cryogenic cave carbonate—a new tool for estimation of the Last Glacial permafrost depth of the Central Europe. Clim Past Discuss 8(3):2145–2185CrossRefGoogle Scholar
  298. Zamora E, Santana A (1979) Características climáticas de la costa occidental de la Patagonia entre las latitudes 46° 40′ y 56° 30′S. Anales del Instituto Patagonia. Punta Arenas (Chile) 10:109–154Google Scholar
  299. Zasadni J, Kłapyta P (2014) The Tatra Mountains during the last glacial maximum. J Maps 10(3):440–456CrossRefGoogle Scholar
  300. Žebre M, Stepišnik U (2014) Reconstruction of Late Pleistocene glaciers on Mount Lovćen, Montenegro. Quatern Int 353:225–235CrossRefGoogle Scholar
  301. Žebre M, Stepišnik U (2015a) Glaciokarst geomorphology of the Northern Dinaric Alps: Snežnik (Slovenia) and Gorski Kotar (Croatia). J MapsGoogle Scholar
  302. Žebre M, Stepišnik U (2015b) Glaciokarst landforms and processes of the southern Dinaric Alps. Earth Surf Proc Land 40(11):1493–1505CrossRefGoogle Scholar
  303. Žebre M, Stepišnik U, Fabekovič G, Grlj A, Koblar S, Kodelja B, Pajk V, Štefanić K (2013) Pleistocenska poledenitev Biokova. Dela 39:141–155CrossRefGoogle Scholar
  304. Žebre M, Stepišnik U, Colucci RR, Forte E, Monegato G (2016) Evolution of a karst polje influenced by glaciation: the Gomance piedmont polje (northern Dinaric Alps). Geomorphology 257:143–154CrossRefGoogle Scholar
  305. Zreda M, Çiner A, Sarıkaya MA, Zweck C, Bayarı S (2011) Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene-Holocene boundary. Geology 39(11):1051–1054CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physical GeographyEötvös Loránd UniversityBudapestHungary
  2. 2.SEK, Department of Physical GeographyEötvös Loránd UniversitySzombathelyHungary
  3. 3.Southern Federal UniversityRostov-on-DonRussia
  4. 4.Institute of Mining and GeosystemsSiberian State Industrial UniversityNovokuznetsk, Kemerovo OblastRussia

Personalised recommendations