Advertisement

Glaciokarsts pp 335-371 | Cite as

Case Studies on Glaciokarst

Chapter
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

This chapter involves five case studies, in which the landscape and the relation of karstification and glacial erosion are described. Three case studies deal with the sample sites of the Alps (Northern Calcareous Alps, Julian Alps and Bernese Alps). One area is situated in the Durmitor (Dinarides), while the fifth area is a special site. It is a subarctic karst in the southern part of Patagonia developing under extreme climatic circumstances.

Keywords

Tsanfleuron Totes Gebirge Julian Alps Durmitor Diego de Almagro Patagonia Karren Karst depression 

References

  1. Bögli A (1976) Die Wichtigsten Karrenformen der Kalkalpen. Karst Processes and Relevants Landforms. ISU Comission on Karst Denudation, Ljubljana, pp 141–149Google Scholar
  2. Djurovič P (2009) Reconstruction of the Pleistocene Glaciers of Mount Durmitor in Montenegro. Acta Geogr Slov 49(2):263–289CrossRefGoogle Scholar
  3. Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, LondonGoogle Scholar
  4. Forsythe R, Mpodozis S (1983) Geologia del basamento pre-jurasico superior en el archipelago Madre de Dios, Magallanes, Chile-Servicio National de Geologia y Mineria, Chile, Bol., pp 39–63Google Scholar
  5. Gams I (2002) Changes of the Triglav Glacier in 1955-94 period in the light of climatic indicators. http://ai.ijs.si/mezi/personal/triglav/
  6. Haserodt K (1965) Untersuchungen zur Hohen - und Altersgliederung der Karstformen in den nördlichen Kalkalpen - Münchner Geogr. H. 27Google Scholar
  7. Hinnov LA (2003) Lofer Cyclothems in the Dachstein Limestone of the Julian Alps. Geol Soc Am, abstracts with programs 35(6):426Google Scholar
  8. Howard AD (1963) The development of karst features. Bull Nat Speleol Soc. 25:45–65Google Scholar
  9. Jennings JN (1985) Karst geomorphology. Basil Blackwell, New York, p. 293Google Scholar
  10. Maire R (1976) Recherches géomorphologiques sur les karsts haut-alpins des massifs de Platé, du Haut-Giffre, des Diablerets et de l’Oberland occidental. Thèse, Université de NiceGoogle Scholar
  11. Maire R (1977) Les Karsts haut-alpins du Platé, du Haut-Giffre et de la Suisse occidentale. Rev Géogr Alpine 65:403–425CrossRefGoogle Scholar
  12. Maire R, l’Equipe Ultima Esperanza (1999) Les “glaciers de marbre” de Patagonie, Chili. Un karst subpolaire océanique de la zone australe. Karstologia 33:25–40Google Scholar
  13. Maire R, Jaillet S, Hoblea F (2009) Karren in Patagonia, a natural laboratory for hydrogeolian dissolution. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst Rock Features. Karren Sculpturing Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna, Ljubljana, Carsologica, 9, pp. 329–348Google Scholar
  14. Reynard E (1997) Carte géomorphologique des Lapiés de Tsanfleuron (Hautes Alpes Calcaires, Valais). Bull Soc Neuch Géogr 41:23–38Google Scholar
  15. Reynard E (2008) Le lapiaz de Tsanfleuron: un géomorphosite glacio-karstique à protéger et à valoriser. In: Reynard E, Hobléa F, Delannoy J-J (éds) Karsts de montagne: géomorphologie, patrimoine et ressources, Chambéry/Lausanne, Cahiers EDYTEM, No. 7, p 168Google Scholar
  16. Szunyogh, G. (2004a) Talajnélküli mészkőfelszínek leoldódási idejének elméleti vizsgálata (Theoretical study of the corrosion time of limestone surfaces without soil) – Karsztfejlődés IX. BDF Természetföldrajzi Tanszék, Szombathely, pp 35–51 (in Hungarian)Google Scholar
  17. Szunyogh G (2004b) Theoretical investigation of the duration of karstic denudation on bare, sloping limestone surface. Acta Carsol 34(1):9–23Google Scholar
  18. Tóth G (2007) A mérsékelt övi mészkő magashegységek fedetlen karros celláinak osztályozása és fejlődése (The classification and development of the uncovered karren cells of the limestone high mountains in the temperate belt), Department of Physical Geography, Berzsenyi Dániel College, Szombathely, p 118 (in Hungarian)Google Scholar
  19. Tóth G (2008) Actes colloque AFK. In: Reynard E, Hobléa F, Delannoy J-J (éds) Karsts de montagne: géomorphologie, patrimoine et ressources, Chambéry/Lausanne, Cahiers Savoisiens de Géographie et Travaux et Recherches de l’InstitutGoogle Scholar
  20. Trudgill ST (1985) Limestone geomorphology. Longman, New YorkGoogle Scholar
  21. Veress M, Tóth G, Zentai Z, Kovács GY (2001) Study of a new method for characterising karren surfaces based on alpine researches. Revue de Géographie Alpine 89:49–62Google Scholar
  22. Veress M, Zentai Z (2004) Karros lejtőfejlődés a Triglav északi előterében (Karren slope development in the northern foreground of Triglav). Karsztfejlődés IX, pp 177–196 (in Hungarian)Google Scholar
  23. Veress M (2016) Covered Karst. Springer, Dordrecht, Heidelberg, London, 536 p.  https://doi.org/10.1007/978-94-017-7518-2
  24. Veress M (2017) Solution doline development on glaciokarst in alpine and Dinaric areas. Earth Sci Rev 173:31–48CrossRefGoogle Scholar
  25. Veress M, Szunyogh G, Tóth G, Zentai Z, Czöpek I (2006) The effect of the wind on karren formation on the Island of Diego de Almagro (Chile). Zeitschrift für Geomorphologie 50:425–445Google Scholar
  26. Zamora E, Santana A (1979) Caracteristical climaticas de la costa occidental de la Patagonia entre las latitudes 46°40′ y 56°30′s. Anales Inst Patagonia 10:109–154Google Scholar
  27. Zivaljevič M, Vujučič P, Stijovič V (1989) Tumačza list Žabljak K. 34-37. Osnovna geološka karta 1:100000, BeogradGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SEK, Department of Physical GeographyEötvös Loránd UniversitySzombathelyHungary
  2. 2.SEK, Department of Physical GeographyEötvös Loránd UniversitySzombathelyHungary

Personalised recommendations