Advertisement

Glaciokarsts pp 289-333 | Cite as

The Development of Glaciokarstic Surfaces

Chapter
  • 279 Downloads
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

This chapter deals with the geomorphic evolution of glaciokarst. The ways of surface denudation are presented on bare karst and soil-covered karst, on concealed karst and allogenic karst, then in light of them, the landscape evolution in the area of various glacial erosional surfaces and landforms will be outlined. The future geomorphic evolution of glacial erosional surfaces are also touched upon.

Keywords

Turnover Geomorphic evolution Senile surface Local Superficial dissolution Peeling Karren physical weathering 

References

  1. Adamson KR, Woodward JC, Hughes PD (2014) Glaciers and rivers: Pleistocene uncoupling in a Mediterranean mountain karst. Quat Sci Rev 94:28–43CrossRefGoogle Scholar
  2. Ahnert F, Williams PW (1997) Karst landform development in a three-dimensional theoretical-model. Zeits für Geomorphologie, NF Suppl. 108:63–80Google Scholar
  3. Al-fares W, Bakalowicz M, Guerin R, Dukhan M (2002) Analysis of the karst aquifer structure of the Lamalou area (Herdult, France) with ground penetraradar. J Appl Geophys 51:97–106CrossRefGoogle Scholar
  4. Allred K (2004) Some carbonate erosion rates of southeast Alaska. J Cave Karst Stud 66(3):89–97Google Scholar
  5. Balázs D (1986) Kína karsztvidékei (karst regions of China). Karszt és Barlang II:123–132 (in Hungarian)Google Scholar
  6. Balázs D (1990) A Dél-Kínai-karsztvidék főbb barlangtípusai (Main cave types of the Southern Chinese karst region). Karszt és Barlang I:53–60 (in Hungarian)Google Scholar
  7. Bauer F, Zötl J (1972) Karst of Austria. In: Herak M, Stringfield VT (eds) Karst, important karst regions of the northern hemisphere. Elsevier, Amsterdam-London-New York, pp 225–265Google Scholar
  8. Beggs TF, Ruth BE (1984) Factors affecting the collapse of cavities. In: Beck BF (ed) Sinkholes: their geology, engineering and environmental impact. Balkema, Rotterdam, pp 183–188Google Scholar
  9. Bočič N, Faivre S, Kovacic M, Horvatincic N (2012) Cave development under the influence of Pleistocene glaciation in the Dinarides—An example from Štirovača Ice Cave (Velebit Mt., Croatia). Zeitschrift für Geomorphologie 56(4):409–433CrossRefGoogle Scholar
  10. Bögli A (1961) Karrentische, ein Beitrug zur Karstmorphologie. Zeitschrift für Geomorphologie 5:185–193Google Scholar
  11. Bögli A (1971) Karstdenudation-das Ausmass des korrosiven Kalkabtrages. Regio Basiliensis 12(2):352–361Google Scholar
  12. Brook GA, Ford DC (1978) The origin of labyrinth and tower karst and the climatic conditions necessary for their development. Nature 275:493–496CrossRefGoogle Scholar
  13. Büdel J (1957) Die doppelten Einebrungsflächen in dem feuchten Tropen. Zeitschrift für Geomorphologie 1:201–288Google Scholar
  14. Bulla B (1954) Általános természeti földrajz II (Physical Geography II.) Tankönyvkiadó, Budapest 549 p. (in Hungarian)Google Scholar
  15. Chen J (1988) Karst collapses in cities and mining areas, China. Env Geol Water Sci 12:29–35CrossRefGoogle Scholar
  16. Cucchi F, Forti F, Ulcigrai F (1994) Degradation by dissollution of carbonate rocks. Int J Speleol 16:125–138CrossRefGoogle Scholar
  17. Cucchi F, Forti F, Marinetti E (1996) Surface degradation int he carbonates of the karst of Trieste (Classical Karst, Italy). Fornos IJ, Gines Á (edits): Karren Landforms. Universitat de les Illes Balears, Palma de Mallorca, pp 41–51Google Scholar
  18. Cui Z, Li D, Feng J, Liu G, Li H (2002) The covered karst, weathering crust and karst (double-level). Sci China 45:366–378CrossRefGoogle Scholar
  19. Currin WE, Barfus BL (1989) Sinkhole distribution and characteristics in Pasco County, Florida. In: Beck BF (ed) Engineering and environmental impacts of Sinkholes and karst. Balkema, Rotterdam, pp 97–106Google Scholar
  20. Cvijič J (1918) Hydrographie suterraine et evolution morphologique du karst. Trav Inst Géogr Alpine 6(4):375–426CrossRefGoogle Scholar
  21. Cvijič J (1924) The evolution of lapiés a study in karst physiography. Geogr Rev XIV:26–49CrossRefGoogle Scholar
  22. Ford D (1996) Karst in a cold climate. In: McCan SB, Ford DC (eds) Geomorphology sans Frontières. John Wiley and Sons, Chichester, pp 153–179Google Scholar
  23. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. John Wiley and Sons, Ltd., Chichester, p 562CrossRefGoogle Scholar
  24. Forti F (1984) Messungen des karstabtrages in der Region Friul-Julisch-Venetien (Italien). Die Höhle 35(3/4):135–139Google Scholar
  25. Gams I (1985) International comparative measurements of surface solution by means of standard limestone tablets. Zbornik Ivana Rakovca 26:361–386Google Scholar
  26. Goeppert N, Goldscheider N, Scholz H (2011) Karst geomorphology of carbanatic conglomerates int he Folded Molasse zone of the Northern Alps (Austria/Germany). Geomorphology 130:289–298CrossRefGoogle Scholar
  27. Grund A (1914) Der geographische Zyklus im karst. Ges Erdkunde 52:621–640Google Scholar
  28. Häuselmann P (2008) Surface corrosion of an Alpine karren field: recent measures at Innerbergli (Siebenhengste, Switzerland). Int J Speleol 37(2):107–111CrossRefGoogle Scholar
  29. Hoblea F, Jaillet S, Marie R (2001) Erosion et ruissellement sur karst nu en context subpolaire océahiguli lesiles calcaires de Patagonie. Karstologia 33(2):13–18Google Scholar
  30. Jaillet S, Hobléa F et toute l’épiquipe Ultima Patagonia (2000) Une morphologie origanele liée au vent: Les – fusées – au crêtes édiennes de Lapiaz de l’Le Madre de Dios Actes de la 10° Denconte d’Octobre, Paris, pp 73–76Google Scholar
  31. Jakucs L (1977) Morphogenetics of karst regions. Adam Hilgar, Bristol, p 284Google Scholar
  32. Jenko, F (1956) Hidrologija in vodno gospodarstvo Krasa. URN:NBN:SI:DOC-T6N2EWFI from dLib.Si - Digitalna knjižnica SlovenijeGoogle Scholar
  33. Jennings JN, Sweeting MM (1963) The limestone ranges of the Fitzroy Basin, Western Australia. Bonner Geog Abh 32:1–60Google Scholar
  34. Jones RJ (1965) Aspects of the biological weathering of limestone pavement. Proc Geol Assoc 76:421–433CrossRefGoogle Scholar
  35. Kiernan K, Lauritzen S-E, Duhig N (2001) Glaciation and cave sediment aggradation around the margins of the Mt. Field Plateau Tasmania. Aust J Earth Sci 48:251–263CrossRefGoogle Scholar
  36. Küfmann C (2014) Solution dynamics at the rock/snow interface during the ablation period in the subnival karst of the Wetterstein Mountains (Northern Calcareous Alps, Germany). Zeitschrift für Geomorphologie 58(1):37–57CrossRefGoogle Scholar
  37. Kunaver J (1979) Some experiences in measuring the surface karst denudation in high alpine environment. Actes du Symposium international sur l’érosion karstique, Aix en Provence 1979:75–85Google Scholar
  38. Kunaver J (2009) The nature of limestone pavements in the central part of the southern Kanin plateau (Kaninski podi) Western Julian Alps. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features – Karren Sculpturing Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna. Carsologica, 9. Ljubljana, Eslovènia pp 299–312Google Scholar
  39. Lauritzen SE (1990) Autogenic and allogenic denudation in carbonate karst by the multiple basin method: An example from Svartisen, North Norway. Earth Surf Proc Land 15:157–169CrossRefGoogle Scholar
  40. Maire R, Jaillet S, Hoblea F (2009) Karren in Patagonia, a natural laboratory for hydrogeolian dissolution. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds): Karst rock features. Karren Sculpturing Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna, Ljubljana, Carsologica, 9. pp 329–348Google Scholar
  41. Martini JES, Grimes KG (2012) Epikarstic maze cave development: Bullita cave system, Judbarra (Gregory Karst, Tropical Australia. Helectite 41:37–66Google Scholar
  42. Paton JR (1964) The origin of the limestone hills of Malaya. J Trop Geogr 18:138–147Google Scholar
  43. Peng J, Cai Y, Yang M, Liang H, Liang F, Song L (2007) Relating areial erosion, Soil erosion and sub-soil erosion to the evolution of Lunan Stone Forest, China. Earth Surf Proc Land 32:260–268CrossRefGoogle Scholar
  44. Plan L (2005) Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201–212CrossRefGoogle Scholar
  45. Salomon (2000) Précis de karstologia. Presses Universitaires de Bordeaux, 251 pGoogle Scholar
  46. Sawicki LS (1909) Ein Beitrag zum geographischen Zyklos im karst Geogr. Z (Vienna) 15(185–204):259–281Google Scholar
  47. Song L, Liang F (2009) Two important evolution models of Lunanshilin karst. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst Rock Features. Karren Sculpturing Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna. Carsologica, 9, pp 453–459Google Scholar
  48. Sweeting MM (1966) The weathering of limestones. In: Dury GH (ed) Essays in geomorphology. Heinemann, London, pp 177–210Google Scholar
  49. Sweeting MM (1973) Karst landforms. Columbia University Press, New York, p 362Google Scholar
  50. Szczygiel J, Gaidzik K, Kicińska D (2015) Tectonic control of cave development: a case study of the Bystra valley int he Tatra Mts., Poland. Ann Soc Geol Pol 85:387–404.  https://doi.org/10.14241/asgp.2015.015CrossRefGoogle Scholar
  51. Thomas TM (1970) The limestone pavements of the North Crop of the South Wales coalfield with special reference to solution rates and processes. Trans Inst Br Geogr 50:87–105CrossRefGoogle Scholar
  52. Thompson P (ed) (1976) Cave exploration in Canada. Edmonton, Canadian Caver, 183 pGoogle Scholar
  53. Thornbury WD (1965) Regional geomorphology of the United States. Wiley, New York, p 609pGoogle Scholar
  54. Tooth AF, Fairchild IJ (2003) Soil and karst aquifer hydrologic controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. J Hydrol 273:51–68CrossRefGoogle Scholar
  55. Trudgill ST (1972) The influence of drifts and soils on limestone weathering in N.W. Claire, Ireland. Proc Univ Bristol Speleol Soc 13:113–118Google Scholar
  56. Trudgill ST (1975) Measurement of erosional weight-loss of rock tables. Br Geomorphol Res Group, Tech Bull 17:13–19Google Scholar
  57. Trudgill ST (1985) Limestone geomorphology. Longman, New York, p 196pGoogle Scholar
  58. Veress M (2009) Investigation of covered karst form development using geophysical measurements. Zeitschrift für Geomorph 53(4):469–486Google Scholar
  59. Veress M (2010) Karst environments—Karren formation in high mountains. Springer, Dordrecht, Heidelberg, London, New York, p 230CrossRefGoogle Scholar
  60. Veress M (2012) Glacial Erosion and Karst Evolution (Karren Formation on the Surfaces Formed by Glaciers). In: Veress B, Szigethy J (eds) Horizons in earth science research 8. Nova, New York, pp 1–94Google Scholar
  61. Veress M (2016a) Covered karst. Springer, 536 p.  https://doi.org/10.1007/978-94-017-7518-2
  62. Veress M (2016b) Postglacial evolution of paleodepressions in glaciokarst areas of the Alps and Dinarides. Zeitschrift für Geomorph 60(4):343–358CrossRefGoogle Scholar
  63. Veress M, Péntek K (1996) Theoretical model of surface karstic processes. Zeitschrift für Geomorphologie 40(4):461–476Google Scholar
  64. Veress M, Zentai Z, Tóth G, Czöpek I (2003) Karsztos felszínfejlődési típusok Diego de Almagro szigetén (Chile) (Types of karstic geomorphic evolution on the island of Diego de Almagro (Chile). Karsztfejlődés VIII:213–229 (in Hungarian)Google Scholar
  65. Veress M, Szunyogh G, Tóth G, Zentai Z, Czöpek I (2006) The effect of the wind on karren formation on the Island of Diego de Almagro (Chile). Zeitschrift für Geomorphologie 50:425–445Google Scholar
  66. Veress M, Lóczy D, Zentai Z, Tóth G, Schläffer R (2008) The origin of the Bemaraha tsingy (Madagascar). Int J Speleol 37(2):131–142CrossRefGoogle Scholar
  67. Waltham AC, Fookes PG (2003) Engineering classification of karst ground conditions. Q J Eng GeolHydrogeol 36:101–118CrossRefGoogle Scholar
  68. Williams PW (1966) Limestone pavements: with special reference to Western Ireland. Trans Inst Br Greographers 40:155–172CrossRefGoogle Scholar
  69. Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61:45–67CrossRefGoogle Scholar
  70. Williams PW (1987) Geomorphic inheritance and the development of tower karst. Earth Surf Proc Land 12:453–465CrossRefGoogle Scholar
  71. Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37(1):1–10CrossRefGoogle Scholar
  72. Yuan D (1987) Environmental and engineering problems of karst geology in China. In: Beck BF, Wilson WL (eds) Karst hydrogeology: engineering and environmental applications. Balkema, Rotterdam, pp 1–11Google Scholar
  73. Žebre M, Stepišnik U, Colucci RR, Forte E, Monegato G (2016) Evolution of a karst polje influenced by glaciation: the Gomance piedmont polje (northern Dinaric Alps). Geomorphology 257:143–154CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SEK, Department of Physical GeographyEötvös Loránd UniversitySzombathelyHungary

Personalised recommendations