Glaciokarsts pp 221-245 | Cite as

Characteristics and Genesis of Subsurface Features in Glaciokarst Terrains

Part of the Springer Geography book series (SPRINGERGEOGR)


Glaciokarst terrains are rich not only in specific landforms, but in subsurface forms as well. Long, complex cave systems are widespread in glaciokarst terrains, and the deepest caves are almost all found in glaciokarsts. On the other hand, as for the volume of cave chambers and passage dimensions, glaciokarst caves are not among the largest ones. One of the most important questions about glaciokarst speleogenesis is whether subglacial cave development exists at all, and if so, how effective it is. Other important issues are the age of glaciokarst caves and the karst hydrology of glaciokarst terrains. Characteristic features of alpine caves are vadose shafts and (sub)horizontal passage levels. The two main variations of passage profiles are the tubular phreatic and the canyon-like vadose cross-sections, moreover, the combination of the previous two also exists, it is the so-called keyhole profile. Among small-scale cave features, paragenetic shapes and scallops are presented in this chapter. Characteristic glaciokarst cave sediments are coarse debris, which are mainly the results of extreme high discharges, fine-grained varved carbonates, which are deposited due to back-flooding conditions, and speleothems, which grow mostly during warm periods, but if some special conditions are satisfied, they may grow even below actually glacier-covered terrains due to the so-called “common-ion effect”. Further on, cryogenic cave calcites are also formed in glaciokarst caves, but their amount is insignificant. As for the karst hydrology, extreme fluctuations are characteristic to glaciokarsts, meaning both high seasonal changes and relatively high daily changes according to melt cycles. Using U-series and cosmogenic nuclide methodology to date speleothems and detrital cave sediments, it is now evident that the majority of glaciokarst caves are polygenetic in origin, surviving one or more glacial periods. Preglacial caves (i.e. caves evolving since at least the Pliocene) are common in the Alps. On the other hand, there are approved postglacial caves as well, which are related to drumlins or isostatic fissures. Finally, subglacial speleogenesis is also proved to be possible, though it has a low rate. Ice-contact cave development takes place when a connected aquifer is formed in the glacier ice and in the neighbouring karstic rock mass.


Subglacial speleogenesis Ice-contact speleogenesis Preglacial Postglacial Speleothems Varved sediments Phreatic Vadose U-series dating Cosmogenic nuclides Common-ion effect Paragenesis 


  1. Atkinson TC, Harmon RS, Smart PL, Waltham AC (1978) Palaoclimatic and geomorphic implications of 230Th/234U dates on speleothems from Britain. Nature 272:24–28CrossRefGoogle Scholar
  2. Atkinson TC, Lawson TJ, Smart PL, Harmon RS, Hess JW (1987) New data on speleothem deposition and palaeoclimate in Britain over the last forty thousand years. J Quat Sci 1:67–72CrossRefGoogle Scholar
  3. Atkinson TC (1983) Growth mechanisms of speleothems in Castleguard Cave, Columbia Icefields, Alberta Canada. Arctic Alp Res 15(4):523–536CrossRefGoogle Scholar
  4. Audra P, Bini A, Gabrovšek F, Häuselmann P, Hobléa F, Jeannin PY, Kunaver J, Monbaron M, Šušteršič F, Tognini P, Trimmel H, Wildberger A (2007) Cave and karst evolution in the Alps and their relation to paleoclimate and paleotopography. Acta Carsologica 36(1):53–68CrossRefGoogle Scholar
  5. Audra P, Quinif Y (1997) Une cavité de haute-montagne originale: la grotte Téophile (Alpe d’Huez, France) Rôle des paléoclimats pléistocènes dans la spéléogenèse. Spéléochronos 8:23–32Google Scholar
  6. Audra P (1994) Alpine karst speleogenesis: case studies from France (Vercors, Chartreuse, Ile de Crémieu) and Austria (Tennengebirge). Cave Karst Sci 21(3):75–80Google Scholar
  7. Audra P (2004) An overview of the current research carried out in the French Western Alps karsts. Acta Carsologica 33(1):25–44Google Scholar
  8. Audra P, Quinif Y, Rochette P (2002) The genesis of the Tennengebirge karst and caves (Salzburg, Austria). J Cave Karst Stud 64(3):153–164Google Scholar
  9. Audra P, Mocochain L, Camus H, Gilli É, Clauzon G, Bigot J (2004) The effect of the Messinian Deep Stage on karst development around the Mediterranean Sea. Examples from Southern France. Geodinamica Acta 17(6):27–38Google Scholar
  10. Bočić N, Faivre S, Kovačić M, Horvatinčić N (2012) Cave development under the influence of Pleistocene glaciation in the Dinarides—an example from Štirovača Ice Cave (Velebit Mt., Croatia). Zeitschrift für Geomorphologie 56(4):409–433CrossRefGoogle Scholar
  11. Bodenhamer HG (2007) Preglacial development of caves at structural duplexes on the Lewis Thrust, Glacier National Park, Montana. J Cave and Karst Stud 69(3):326–341Google Scholar
  12. Braun DD (1989) Glacial and periglacial erosion of the Appalachians. Geomorphology 2(1–3):233–256CrossRefGoogle Scholar
  13. Brook GA, Ford DC (1980) Hydrology of the Nahanni Karst, northern Canada, and the importance of extreme summer storms. J Hydrol 46(1–2):103–121CrossRefGoogle Scholar
  14. Burger PA (2004) Glacially-influenced sediment cycles in the Lime creek karst, Eagle County, Colorado. In Studies of cave sediments, Springer, pp 107–122Google Scholar
  15. Chevalier P (1944) Distinctions morphologiques entre deux types d’érosion souterraine. Revue de géographie alpine 32(3):475–486CrossRefGoogle Scholar
  16. Clark ID, Lauriol B (1992) Kinetic enrichment of stable isotopes in cryogenic calcites. Chem Geol Isot. Geosci Sect 102:217–228Google Scholar
  17. Cooper M (2014) Verification of post-glacial speleogenesis and the origins of epigene maze caves in New York. MSc dissertation, Mississippi State UniversityGoogle Scholar
  18. Cooper MP, Mylroie JE (2015) Glaciation and Speleogenesis. SpringerGoogle Scholar
  19. Corbel J (1957) Les karsts du Nord-Ouest de l’Europe et de quelques régions de comparaison: étude sur le rôle du climat dans l’érosion des calcaires. Revue de Géographie de Lyon 12Google Scholar
  20. Dreybrodt W (1982) A possible mechanism for growth of calcite speleothems without participation of biogenic carbon dioxide. Earth Planet Sci Lett 58(2):293–299CrossRefGoogle Scholar
  21. Ek C (1964) Note sur les eaux de fonte des glaciers de la Haute Maurienne (Savoie, France): leur action sur les carbonates. Revue belge de Géographie 88(1–2):127–156Google Scholar
  22. Farrant AR, Simms MJ (2011) Ogof Draenen: speleogenesis of a hydrological see-saw from the karst of South Wales. Cave Karst Sci 38(1):31–52Google Scholar
  23. Farrant AR, Smart PL (2011) Role of sediment in speleogenesis; sedimentation and paragenesis. Geomorphology 134(1):79–93CrossRefGoogle Scholar
  24. Farrant AR, Smith CJ, Noble SR, Simms MJ, Richards DA (2014) Speleogenetic evidence from Ogof Draenen for a pre-Devensian glaciation in the Brecon Beacons, South Wales UK. J Quat Sci 29(8):815–826CrossRefGoogle Scholar
  25. Faulkner T (2006) The impact of the deglaciation of central Scandinavia on karst caves and the implications for Craven’s limestone landscape. In: Re-thinking Craven’s limestone landscape, p 4Google Scholar
  26. Ford DC (1971) Alpine Karst in the Mt. Castleguard-Columbia icefield area, Canadian rocky mountains. Arctic Alp Res 15(4):239–252CrossRefGoogle Scholar
  27. Ford DC (1976a) Evidences of multiple glaciation in South Nahanni National Park, Mackenzie Mountains, Northwest Territories. Can J Earth Sci 13(10):1433–1445CrossRefGoogle Scholar
  28. Ford DC (1976b) Evidence of multiple glaciation in South Nahanni National Park, Mackenzie Mountains, Northwest Territories. Can J Earth Sci 13:1433–1445CrossRefGoogle Scholar
  29. Ford DC (1983a) Effects of glaciations upon karst aquifers in Canada. J Hydrol 61(1–3):149–158CrossRefGoogle Scholar
  30. Ford DC (1983b) The physiography and speleogenesis of castleguard cave, Columbia icefields, Alberta Canada. Arct Alp Res 15(4):437–450CrossRefGoogle Scholar
  31. Ford DC (1983c) Alpine karst systems at crowsnest pass, Alberta-British Columbia Canada. J Hydrol 61(1):187–192CrossRefGoogle Scholar
  32. Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. John Wiley and Sons Ltd, West Sussex, EnglandCrossRefGoogle Scholar
  33. Ford DC, Schwarcz HP, Drake JJ, Gascoyne M, Harmon RS, Latham AG (1981) On the age of the extant relief in the southern Rocky Mountains of Canada. Arct Alp Res 13(1):1–10CrossRefGoogle Scholar
  34. Gascoyne M, Ford DC (1984) Uranium series dating of speleothems. II: results from the Yorkshire Dales and implications for cave development and quaternary climates. Cave Sci 11(2):65–85Google Scholar
  35. Gascoyne M, Currant AP, Lord TC (1981) Ipswichian fauna of Victoria Cave and the marine palaeoclimatic record. Nature 294(5842):652–654Google Scholar
  36. Gascoyne M, Latham AG, Harmon RS, Ford DC (1983) The antiquity of Castleguard Cave, Columbia Icefields, Alberta Canada. Arc Alp Res 15(4):463–470CrossRefGoogle Scholar
  37. Harmon RS, Ford DC, Schwarz HP (1977) Interglacial chronology of the Rocky and MacKenzie Mountains based upon 230Th/234U dating of calcite speleothems. Can J Earth Sci 14:2543–2552CrossRefGoogle Scholar
  38. Harmon RS, Thompson P, Schwarcz HP, Ford DC (1975) Uranium-series dating of speleothems. Nat Speleol Soc Bull 37:21–33Google Scholar
  39. Häuselmann P, Granger DE (2005) Dating of caves by cosmogenic nucleides: method, possibilities, and the Siebenhengste example (Switzerland). Acta Carsologica 34(1):43–50Google Scholar
  40. Häuselmann P, Lauritzen SE, Jeannin PY, Monbaron M (2008) Glacier advances during the last 400 ka as evidenced in St. Beatus Caves (BE, Switzerland). Quat Int 189(1):173–189CrossRefGoogle Scholar
  41. Häuselmann P (2007) How to date nothing with cosmogenic nuclides. Acta Carsologica 36(1):93–100CrossRefGoogle Scholar
  42. Holzkämper S, Spötl C, Mangini A (2005) High-precision constraints on timing of Alpine warm periods during the middle to late Pleistocene using speleothem growth periods. Earth Planet Sci Lett 236(3):751–764CrossRefGoogle Scholar
  43. Horn G (1935) Űber die Bildung von Karsthöhlen unter einem Gletcher. Nor Geogr Tidsskr 5:494–498CrossRefGoogle Scholar
  44. Horn G (1937) Über einige Karsthöhlen in Norwegen. Mitteilungen für Höhlen und Karstforschung 1–15Google Scholar
  45. Horn G (1947) Karsthuler i Nordland. Norg Geol Unders 165:1–177Google Scholar
  46. Klimchouk A, Bayari S, Nazik L, Törk K (2006) Glacial destruction of cave systems in high mountains, with a special reference to the Aladaglar massif, Central Taurus Turkey. Acta Carsologica 35(2):111–121Google Scholar
  47. Klimchouk A, Nazik L, Bayari S, Tork K, Kasjan Y (2004) Kuzgun Cave and its Context: the first super-deep cave in the Aladaglar Massif, Turkey.
  48. Lauritzen SE (1983) Arctic and alpine karst symposium. Program and field guide. Dept. of Chemistry, University of Oslo. 89 pGoogle Scholar
  49. Lauritzen SE (1984) Evidence of subglacial karstification in Glomdal, Svartisen, Norway. Nor Geogr Tidsskr 38:169–170CrossRefGoogle Scholar
  50. Lauritzen SE (1986) Kvithola at Fauske; Northern Norway: an example of ice- contact speleogenesis. Nor Geol Tidsskr 66:153–161Google Scholar
  51. Lauritzen SE, Gascoyne M (1980) The first radiometric dating of Norwegian stalagmites–Evidence of pre-Weichselian karst caves. Nor Geogr Tidsskr 34:77–82CrossRefGoogle Scholar
  52. Lauritzen SE (2006) Caves and speleogenesis at Blomstrandsøya, Kongsfjord W. Spitsbergen. Int J Speleol 35(1):37–58CrossRefGoogle Scholar
  53. Lauritzen SE, Mylroie JE (2000) Results of a speleothem U/Th dating reconnaissance from the Helderberg plateau New York. J Cave Karst Stud 62(1):20–26Google Scholar
  54. Lauritzen SE, Skoglund RØ (2013) Glacier ice-contact speleogenesis. Treatise Geomorphol 6:363–396CrossRefGoogle Scholar
  55. Luetscher M, Hoffmann DL, Frisia S, Spötl C (2011) Holocene glacier history from alpine speleothems, Milchbach cave Switzerland. Earth Planet Sci Lett 302(1):95–106CrossRefGoogle Scholar
  56. Maire R (1978) Les karsts sous-glaciaires et leurs relations avec le karst profond. Revue de géographie alpine 66(2):139–148CrossRefGoogle Scholar
  57. Maire R (1990) La haute montagne calcaire: karsts, cavités, remplissages, paléoclimats, Quaternaire. Karstologia-Mémoires 3:1–731Google Scholar
  58. Mangerud J, Gyllencreutz R, Lohne Ö, Svendsen JI (2011) Glacial history of Norway. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations-extent and chronology: a closer look. ElsevierGoogle Scholar
  59. Murphy PJ, Faulkner TL, Lord TC, Thorp JA (2015) The caves of Giggleswick Scar-examples of deglacial speleogenesis? Cave Karst Science 42(1):42–53Google Scholar
  60. Murphy P, Westerman AR, Clark R, Booth A, Parr A (2008) Enhancing understanding of breakdown and collapse in the Yorkshire Dales using ground penetrating radar on cave sediments. Eng Geol 99(3):160–168CrossRefGoogle Scholar
  61. Oxaal L (1914) Kalkstenshuler i Ranen. Norg Geol Unders 69:1–47Google Scholar
  62. Palmer AN (2003) Speleogenesis in carbonate rocks. Speleogenesis Evol Karst Aquifers 1(1):2–11Google Scholar
  63. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21CrossRefGoogle Scholar
  64. Plan L, Decker K (2006) Quantitative karst morphology of the Hochschwab plateau, Eastern Alps, Austria. Zeitschrift Für Geomorphologie Supplementband 147:29–54Google Scholar
  65. Plan L, Filipponi M, Behm M, Seebacher R, Jeutter P (2009) Constraints on alpine speleogenesis from cave morphology—a case study from the eastern Totes Gebirge (Northern Calcareous Alps, Austria). Geomorphology 106(1):118–129CrossRefGoogle Scholar
  66. Salvigsen O, Elgersma A (1985) Large-scale karst features and open taliks at Vardeborgsletta, outer Isfjorden. Svalbard, Polar Res 3(2):145–153CrossRefGoogle Scholar
  67. Skoglund RØ, Lauritzen SE (2010) Morphology and speleogenesis of Okshola (Fauske, northern Norway): example of a multi-stage network cave in a glacial landscape. Norw J Geol 90:123–137Google Scholar
  68. Skoglund RØ, Lauritzen SE, Gabrovšek F (2010) The impact of glacier ice-contact and subglacial hydrochemistry on evolution of maze caves: a modelling approach. J Hydrol 388(1):157–172CrossRefGoogle Scholar
  69. Skoglund RØ, Lauritzen SE (2011) Subglacial maze origin in low-dip marble stripe karst: examples from Norway. J Cave Karst Stud 73(1):31–43CrossRefGoogle Scholar
  70. Skoglund RØ, Lauritzen SE (2013) Characterisation of a post-glacial invasion aquifer: the Grønli-Seter karst system, northern Norway. Norwegian J Geol 93(1):61–73Google Scholar
  71. Smart CC (2004) Glacierized and glaciated karst. Gunn J (edt) Encyclopedia of caves and karst science New York. Fitzroy Dearborn, NY, pp 804–809Google Scholar
  72. Smart CC (1983) The hydrology of the castleguard karst, columbia icefields, Alberta Canada. Arctic Alp Res 15(4):471–486CrossRefGoogle Scholar
  73. Spötl C, Mangini A (2007a) Speleothems and paleoglaciers. Earth Planet Sci Lett 254(3):323–331CrossRefGoogle Scholar
  74. Spötl C, Mangini A (2007b) Speleothems and paleoglaciers. Earth Planet Sci Lett 254(3):323–331CrossRefGoogle Scholar
  75. Spötl C, Mangini A, Frank N, Eichstädter R, Burns SJ (2002a) Start of the last interglacial period at 135 ka: evidence from a high Alpine speleothem. Geology 30(9):815–818CrossRefGoogle Scholar
  76. Spötl C, Unterwurzacher M, Mangini A, Longstaffe FJ (2002b) Carbonate speleothems in the dry, inneralpine Vinschgau valley, northernmost Italy: witnesses of changes in climate and hydrology since the last glacial maximum. J Sediment Res 72(6):793–808CrossRefGoogle Scholar
  77. Szabó L (2008) Barlangfejlődés a Canin-fennsík mélyén. Karsztfejlődés 13:247–267Google Scholar
  78. Szabó L (2009) Cave area of the Canin-Plateau—a naturally geodiverse land in the middle of Europe. Acta Climatologica et Chorologica 42–43:143–150Google Scholar
  79. Waltham AC, Simms MJ, Farrant AR, Goldie HS (1997) Karst and caves of Great Britain. Geol Conserv Rev 12, 358 pGoogle Scholar
  80. Werenskiold W (1953) The extent of frozen ground under the sea bottom and glacier beds. J Glaciol 2:197–200CrossRefGoogle Scholar
  81. White WB (1979) Karst landforms in the Wasatch and Uinta Mountains, Utah. NSS Bulletin 41:80–88Google Scholar
  82. Žák K, Hercman H, Orvošová M, Jačková I (2009) Cryogenic cave carbonates from the Cold Wind Cave, Nízke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian. Int J Speleol 38(2):139–152CrossRefGoogle Scholar
  83. Žák K, Richter DK, Filippi M, Živor R, Deininger M, Mangini A, Scholz D (2012) Cryogenic cave carbonate–a new tool for estimation of the Last Glacial permafrost depth of the Central Europe. Clim Past Discuss 8(3):2145–2185CrossRefGoogle Scholar
  84. Žák K, Urban J, Cı́lek V, Hercman H (2004) Cryogenic cave calcite from several Central European caves: age, carbon and oxygen isotopes and a genetic model. Chem Geol 206(1):119–136CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physical GeographyEötvös Loránd UniversityBudapestHungary

Personalised recommendations