Advertisement

Glaciokarsts pp 71-114 | Cite as

Glacial Erosion on Karst

Chapter
  • 290 Downloads
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

The chapter presents the movement of warm-based and cold-based glaciers. The factors influencing the slide and flow of glaciers are described. The geomorphic action of glaciers is discussed with a focus on karst. On karst, glacial erosion is characteristic in karst depressions, in stratified limestone, as well as in troughs which developed on similar rocks. As regards depressions, the denudation of slopes the inclination of which is identical with (downstream slopes) or opposite to (upstream slopes) the direction of glacier flow, the destruction of the thresholds of uvalas (all of them) and the glacial erosional transformation of depressions partly filled with non-moving ice are analysed. The formation of stepped surfaces of stratified limestone terrains as well as the relationship between troughs with stepped surfaces, valley directions and the dip direction of beds are presented.

Keywords

Warm-based glacier Cold-based glacier Polythermal glacier Asymmetric depression Depression with a composite slope Dividing wall Step Separation of beds Dissolution along fracture Dissolution along bedding plane Asymmetric glacier valley 

References

  1. Adamson KR, Woodward JC, Hughes PO (2014) Glaciers and rivers: Pleistocene uncoupling in a Mediteranean mountain karst. Quatern Sci Rev 94:28–43CrossRefGoogle Scholar
  2. Atkins CB, Barrett PJ, Hicock SR (2002) Cold glaciers erode and deposit: evidence from Allan Hills, Antarctica. Geology 30(7):659–662CrossRefGoogle Scholar
  3. Atkins CB, van der Meer JJM, Barrett PJ, Hicock SR (2009) Evidence for glacial activity in the Allan Hills, Antarctica. Quat Sci Rev 28(27–28):3124–3137Google Scholar
  4. Barrère P (1964) Le relief karstique dans l’ouest des Pyrénées centrales. Revue Belge de Geographie 88(1–2):9–62Google Scholar
  5. Bauer F (1952) Zur Verkarstung des Sengseng-ebirges in Oberösterreich. Mitt. Höhlenkomm 7–14Google Scholar
  6. Benn DI, Evans DJA (2010) Glaciers and glaciation. Hodder Education, London, p 802Google Scholar
  7. Bennett MR, Glasser NF (2009) Glacial geology: ice sheets and landforms. Wiley-Blackwell, Chichester UK, p 385Google Scholar
  8. Bögli A (1964) Un exemple de complexe galciokarstique: Le Schichttreppenkarst. Revue Belge de Geographie 88(1–2):64–82Google Scholar
  9. Bögli A (1978) Karsthydrographia und physische Spelӓologie (Karst hydrology and physical speleology). Springer, Heidelberg, New York, Berlin 292 pGoogle Scholar
  10. Boulton GS (1974) Processes and patterns of glacial erosion. In: Coates DR (ed) Glacial geomorphology, Proceedings of the Fifth Annual Geomorphology Symposia, Binghampton, Allen & Unwin, London, pp 41–87Google Scholar
  11. Boulton GS (1993) Ice ages and climatic change. In: Duff P, Mcl D (eds) Holmes’ principles physical geology, 4th edn. Chapman and Hall, London, pp 439–469Google Scholar
  12. Chorley RJ, Schumm SA, Sugden DE (1984) Geomorphology. Methuen, London 605 ppGoogle Scholar
  13. Clayton M (1966) The origin of the landforms of the Malham area. Field Stud 2:359–384Google Scholar
  14. Clayton K (1981) Explanatory of the landforms of the Malham area. Field Stud 5:389–423Google Scholar
  15. Cuffey KM, Paterson WSB (2010) The physics of glaciers, 4th edn. Academic Press, London, p 704Google Scholar
  16. Cvijič J (1913) The ice age in the Prokletije and surrounding mountains (in Serbian). Glas Srpske Kraljevske Akademije Nauka, Belgrade. XCI, 149 pGoogle Scholar
  17. Djurovič P (2009) Reconstruction of the pleistocene glaciers of Mount Durmitor in Montenegro. Acta geographica Slovenica 49(2):263–289CrossRefGoogle Scholar
  18. Djurović P, Petrović AS, Simić S (2010) The overall impact of Pleistocene glaciation on morphological diversity of at Durmitor and Žijovo. Serbian Geographical Society 90:17–34.  https://doi.org/10.2298/gsgd1001017dCrossRefGoogle Scholar
  19. Dreimanis AA (1989) Tills: their genetic terminology and classification. In: Goldthwait RP, Matsch CL (eds) Genetic classification of glacigenic deposits. Balkema, Rotterdam, pp 17–83Google Scholar
  20. Fels E (1929) Das Problem der Karbildung in den Ostalpen. Petermanns Mitt., Ergänzungsh 202:1–84Google Scholar
  21. Ford DC (1983) Effects of glaciations upon karst aquifers in Canada. J Hidrol 61:149–158CrossRefGoogle Scholar
  22. Ford DC (1996) Karst in a Cold Climate: Effects of Glaciation and Permafrost Conditions Upon the Karst Landform Systems of Canada. In: Mc Cann SB, Ford DC (eds) Geomorphology sans frontières. Wiley, Chichester, pp 153–179Google Scholar
  23. Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London, p 601CrossRefGoogle Scholar
  24. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, p 562CrossRefGoogle Scholar
  25. Glasser NF, Hambrey MJ (2001) Styles of sedimentation beneath Svalbard valley glaciers under changing dynamic and thermal regimes. J Geol Soc, London 158:697–707CrossRefGoogle Scholar
  26. Glasser NF, Hambrey MJ (2003) Ice-marginal terrestrial landsystems: Svalbard polythermal glaciers. In: Landsystems Glacier (ed) Evans DJA. Arnold, London, pp 65–87Google Scholar
  27. Goldie HS (1996) The of Great Asby Scar, Cumbria. U. K. Environ Geol 28(3):128–136CrossRefGoogle Scholar
  28. Goodsell B, Hambrey MJ, Glasser NF (2005) Debris transport in a temperate: Haut Glacier d’Arolla, Valais, Switzerland. J Glaciol 51(172):139–146CrossRefGoogle Scholar
  29. Gordon JE (1977) Morphometry of in the Kintail–Affric–Cannich area of northwest Scotland. Geogr Ann 59A:177–194CrossRefGoogle Scholar
  30. Goudie A (1990) The landforms of England and Wales. Blackwell, Oxford, p 394Google Scholar
  31. Hallet B (1976) Deposits formed by subglacial of CaCO3. Bull Geol Soc Am 87:1003–1015CrossRefGoogle Scholar
  32. Hambrey MJ, Fitzsimons SJ (2010) Development of sediment-landform associations at cold glacier margins, dry valleys, Antarctica. Sedimentology 57:857–882CrossRefGoogle Scholar
  33. Hambrey MJ, Bennett MR, Dowdeswell JA, Glasser NF, Huddart D (1999) Debris entrainment and transfer in polythermal valley glaciers. J Glaciol 45:69–86CrossRefGoogle Scholar
  34. Harbor JM, Hallet B, Raymond CF (1988) A numerical model of landform development by glacial erosion. Nature 333:347–349CrossRefGoogle Scholar
  35. Haynes VM (1968) The influence of and rock structure on corries in Scotland. Geogr Ann 50A:221–234CrossRefGoogle Scholar
  36. Hooke R, Le B (1989) Englacial and subglacial hydrology: a qualitative review. Artic Alpine Res 21:221–233CrossRefGoogle Scholar
  37. Hubbard B (1998) Bedrock surface roughness and the distribution of subglacially precipitated carbonate deposits implications for formation at Glacier de Transfleuron, Switzerland. Surf Process Land 23:261–270CrossRefGoogle Scholar
  38. Jones H, Arnold N (1999) Modelling the entrainment and transport of suspended sediment in subglacial hydrological systems. Glacial Geol Geomorphol 9:20. http://boris.qub.ac.uk/ggg/papers/full/1999/rp091999/rp09.html. 2003.05.10
  39. Kerr A (1993) Topography climate and ice masses: review. Terra Nova 5:332–342CrossRefGoogle Scholar
  40. Kunaver JJ (2009) The nature of limestone pavementsLimestone pavements in the central part of the southern Kanin plateau (Kaninski podi) Western Julian. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst Rock Features—Karren Sculpturing Zalozba ZRC, pp 299–312. Institut za raziskovanje krasa ZRC SAZU, Postojna. Carsologica, 9. Ljubljana, EslovèniaGoogle Scholar
  41. Lauritzen S-E (1984) Evidence of subglacial Karstification in Glomdal Svartisen. Norsk Geografisk Tidesskrift 38(3–4):169–170CrossRefGoogle Scholar
  42. Lauritzen S-E (1986) Kvithola at Fauske, northern Norway: an example of ice-contact speleologenesis. Norks Geografisk Tidesskrift 66:153–161Google Scholar
  43. Lepirica A (2008) Geomorphological characteristics of the massif Prenj. Acta Carsologica 37(2-3):307–329CrossRefGoogle Scholar
  44. Lloyd Davies MT, Atkins CB, van der Meer JJM, Barrett PJ, Hicock SR (2009) Evidence for cold-based glacial activity in the Allan Hills, Antarctica. Quaternary Science Reviews 28(27–28):3124–3137Google Scholar
  45. Menkovič LJ (1994) Glacial traces in the Djeravica area, Prokletije mountains (in Serbian). Geografski gadisnjak 30:139–146Google Scholar
  46. Mollard JD, Jones JR (1984) Airphoto interpretation and the Canadian landscape. Canadian Government Publishing Centre, Hull, Québec, p 415CrossRefGoogle Scholar
  47. Murphy PJ, Faulkner TL, Lord TC, Thorp JA (2015) The Caves of Giggleswick Scar—examples of deglacial speleogenesis. Cave and Karst Science. 42(1):42–53Google Scholar
  48. Rastas J, Seppälä M (1981) Rock jointing and forms on roches moutonnées, SW Finland. Ann Glaciol 2:159–163CrossRefGoogle Scholar
  49. Rose L, Vincent P (1983) Some aspects of the morphometry of grikes: a micture model approach. In: Paterson MM (ed) New direction in Karst, proceedings of the Anglo-French Karst Symposium. Geo Books, Norwich, pp 497–514Google Scholar
  50. Smart C (1986) Origin and development of glacio-karst closed depressions in de Europa, Spain. Zeits f Geom N I 30(4):423–443Google Scholar
  51. Smart C (2004) Glacierized and glaciated karst. In: Gunn J (ed) Encyclopedia of Caves and Karst Science, Fitzroy Dearborn, New York, London, pp 388–391Google Scholar
  52. Summerfield (1991) Global Geomorphology: an introduction to the study of landforms. Longman Scientific & Technical, Harlow XIV: 537 pGoogle Scholar
  53. Sweeting MM (1973) Karst landforms. Columbia University Press, New York, p 362Google Scholar
  54. Telbisz T, Dragašice H, Nagy B (2005) A horvátországi Biokovo-hegység karsztmorfológiai jellemzése terepi megfigyelések és digitális domborzatelemzés alapján. Karsztfejlődés 10:229–243Google Scholar
  55. Veress M (2010) Karst environments, Karren formation in high mountains. Springer, Dordrecht Heidelberg London New York 250 pCrossRefGoogle Scholar
  56. Veress M (2016) Covered Karst, Springer, 536 p.  https://doi.org/10.1007/978-94-017-7518-2
  57. Vincent P (1983) The dissolving landscape: karren. Geograph Mag 55:508–510Google Scholar
  58. Vincent P (2009) Limestone pavements in the British Isles. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst Rock Features—Karren Sculpturing Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna. Carsologica, 9. Ljubljana, Eslovènia, pp 267–274Google Scholar
  59. Walden J (2002) Glaciers and glacial processes I & II. Lecture Notes—School of Geography and Geosciences, University of St. Andrews, St. Andrews, UK. http://www.st-andrews.ac.uk/www_sgg/personal/jw9link/jwteach/glacial/ppt2003.06.10
  60. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, Oxford, p 463Google Scholar
  61. Williams PW (1966) Limestone pavements with special reference to western. Trans Inst Br Geogr 40:155–172CrossRefGoogle Scholar
  62. Williams PW (2008) The role of the in karst and cave hydrogeology: a review. Int J Speleol 37(1):1–10CrossRefGoogle Scholar
  63. Žebre M, Stepišnik U (2015a) Glaciokarst landforms and processes of the southern Dinaric. Surf Process Land.  https://doi.org/10.1002/esp.3731CrossRefGoogle Scholar
  64. Žebre M, Stepišnik U (2015b) Glaciokarst geomorphology of the Northern Dinaric Alps: Snežnik (Slovenia) and Gorski Kotar (Croatia). J Maps.  https://doi.org/10.1080/17445647.2015.1095133CrossRefGoogle Scholar
  65. Zötl J (1963) Zur Morphogenese des Ennstales. Mitt Naturwiss Ver Steiermark 93:155–160Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SEK, Department of Physical GeographyEötvös Loránd UniversitySzombathelyHungary

Personalised recommendations