Advertisement

General Description of Glaciokarsts

Chapter
  • 293 Downloads
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

This chapter presents the glacier types associated with karsts and the types of glaciokarst. Among the latter, the glacier/karst interactions and planform types are analysed in detail. The conditions of glacier formation are investigated and the geomorphological zones and subzones of glaciokarst are overviewed. When presenting the properties of glaciokarst, the balance of subglacial waters and epikarst characteristics are described, glaciokarst types are distinguished by the age and mode of origin and the modes and rates of transformation of landforms are identified.

Keywords

Glacier types Glaciokarst types Geomorphological zones Geomorphological subzones Epikarst 

References

  1. Adamson KR, Woodward JC, Hughes PO (2014) Glaciers and rivers: Pleistocene uncoupling in a Mediteranean mountain karst. Quat Sci Rev 94:28–43CrossRefGoogle Scholar
  2. Allen JRL (1970) Physical processes of sedimentation. Allen & Unwin, London, p 248Google Scholar
  3. Andrejchuk VN (1992) Some aspects of glaciokarst study. Problems of Pseudokarst. Abstracts 58–62. Perm, RussianGoogle Scholar
  4. Atkinson TC (1983) Growth mechanisms of speleothems in Castleguard Cave, Columbia lcefields, Alberta, Canada. Arct Alp Res 15:523–536CrossRefGoogle Scholar
  5. Audra P (2000) Le karst haut alpin du Kanin (Alpes juliennes, Slovenie-Italie). Karstologia 35(1):27–38Google Scholar
  6. Auly T (2000) La région d’Arudy: les relations glacio-karstiques, élément fondamental de l’organisation morphologique. T.L.G.P.A. 18:33–61Google Scholar
  7. Auly T (2005) Comparison entre les bassins de Lourdes et d’Arudy: Aspects géomorphologiques. Actes de colloque: «Lucrarile seminarului geografic Dimitri cantemir: 100 de ani de invatamant geografic iesean», vol 25. Iasi, Roumanie, pp 7–21Google Scholar
  8. Auly T (2008) Quelques morphologies de rapport karst/glaciaire dans les Pyrénées (France). In: Tyc A, Stefaniak K (ed) Karst and cryokarst. University of Silesia Faculty of Earth Sciences, University of Wrocaw Zoological Institute, Sosnowiec-Wroclaw, Pologne, pp 129–154Google Scholar
  9. Barrére P (1964) Le relief karstique dans l’ouest des Purénées centrales. Revue Belge de Geographie. Ed. Soc. Roy. Geogr. Special Publ., Karst et Climats Froids 88(1–2):9–62Google Scholar
  10. Bauer F (1962) Nacheiszeitliche Karstformen in der osterreichischen Kalkalpen. In: Prodeedings of the 2nd International Congress of Speleology, Bari, pp 299–328Google Scholar
  11. Bauer F (1964) Kalkabtragungsmessugen in der Östereichischen. Erkunde 18:95–112Google Scholar
  12. Bauer N (2005) A növényzet egy újabb lehetséges hatása a magashegységi karros térszínek fejlődésére (A new possible effect of plant life on the development of high mountain karrs reliefs). Karszt és Barlang 2000–2001 évf.:17–20 (in Hungarian)Google Scholar
  13. Bauer F, Zötl J (1972) Karst of Austria. In: Herak M, Stringfield VT (eds) Karst, important karst of the Northern Hemisphera. Elsevier, Amsterdam, London, New York, pp 225–265Google Scholar
  14. Bayari S, Zreda M, Çiner A, Nazik L, Törk K, Özyurt N, Klimchouk A, Sarikaya AM (2003) The extent of Pleistocene ice cap, glacial deposits and glaciokarst in the Aladaglar massif: central Taurids range, southern Turkey. In: XVI INQUA Congress, Reno, Nevada, 23–30 July 2003. Abstracts with Programs. Abstract 40–9, p 144Google Scholar
  15. Belij S (1985) Glacijalni i periglacijalni reljef južnog Velebita. Beograd, Srpsko geografsko društvo, 68 strGoogle Scholar
  16. Benn DI, Evans DJA (1998) Glaciers and glaciation. Arnold, London, p 734Google Scholar
  17. Bennett MR (2003) Ice streams as the arteries of an ice sheet: their mechanics, stability and significance. Earth-Sci Rev 61(3–4):309–339CrossRefGoogle Scholar
  18. Bennett MR, Glasser NF (2009) Glacial geology: ice sheets and landforms. Wiley-Blackwell, Chichester UK, p 385Google Scholar
  19. Bindschadler R, Choi H, Wichlaez A, Bingham RG, Bohlander J, Brunt KM, Corr H, Drews R, Fricker HA, Hall M, Hindmarsh RCA, Kohler J, Padman L, Rack W, Rotschky G, Urbini S, Vornberger P, Young N (2011) Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the international polar year. Cryosphere 5:569–588CrossRefGoogle Scholar
  20. Bögli A (1964) Le Schichttreppenkarst. Un example de complexe glaciokarstique. Revue Belge de. Geographie 88(1–2):64–82Google Scholar
  21. Bognar A, Faivre S, Pavelić J (1991) Tragovi oledbe na Sjevernom Velebitu. Geografski glasnik 53:27–39Google Scholar
  22. Brook D, Chapman P, Wilde KA (1977) Caves and karst of the Hindenburg ranges. Geogr J 143(1):27–41CrossRefGoogle Scholar
  23. Church M, Ryder JM (1972) Paraglacial sedimentation: consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059–3072CrossRefGoogle Scholar
  24. Church M, Slaymaker O (1989) Disequilibrium of holocene sediment yield in glaciated British Columbia. Nature 337:452–454CrossRefGoogle Scholar
  25. Clayton KM (1966) The origin of the landforms of the Malham area. Field Stud 2:359–384Google Scholar
  26. Colhoun EA, Kiernan K, Barrows TT, Goede A (2010) Advances in quaternary studies in Tasmania. In: Bishop P, Pillans B (eds) Australian Landscapes, vol 346. Geological Society of London, Special Publication, pp 165–183Google Scholar
  27. Cooper MP, Mylroie JE (2015) Glaciation and speleogenesis. Springer, Berlin, Heidelberg, New York, 142 p.  https://doi.org/10.1007/978-3-319-16534-9
  28. Curl RL (1966) Scallops and flutes. Trans Cave Res Group Great Br 7(2):121–160Google Scholar
  29. Delannoy J (1983) Le complexe souterrain du Plateau du Sornin (Vercours, France), Le Gouffre Berger et le Scialet de la Fromagere. Karstologia 2:3–12CrossRefGoogle Scholar
  30. Djurovič P (2009) Reconstruction of the pleistocene glaciers of mount Durmitor in Montenegro. Acta geogr Slov 49(2):263–289CrossRefGoogle Scholar
  31. Djurović P, Petrović AS, Simić S (2010) The overall impact of pleistocene glaciation on morphological diversity of uvalas at Durmitor and Žijovo. Serb Geogr Soc 90:17–34.  https://doi.org/10.2298/GSGD1001017DCrossRefGoogle Scholar
  32. Dubljanszkij VN (1987) Teoreticseszkoje modelirovanije dinamiki formirovanija gidrotermokarsztovüh polosztyej. Metodi i izucssenyija geologicseszkihjavlenyij. Novoszibirszk, pp 97–111Google Scholar
  33. Ek C (1964) Note sur les eaux de fonte des glaciers de la Haute Maurienne: leur action sur les carbonates. Rev Belge Geogr 88:127–156Google Scholar
  34. Embleton C (1980) Glacial processes. In: Embleton C, Thornes J (eds) Processes Geomorphol. E. Arnold, London, pp 272–326Google Scholar
  35. Fels E (1929) Das Problem der Karbildung in den Ostalpen. Petermanns Mitt Ergänzungsh 202:1–84Google Scholar
  36. Ford DC (1979) A review of alpine karst in the Southern Rocky Mountains of Canada. Bull Nat Speleol Soc 41:53–65Google Scholar
  37. Ford DC (1983) Effects of glaciations upon karst aquifers in Canada. J Hydrol 61:149–158. https://dx.doi.org/10.1016/022-1694(83)90240-8
  38. Ford DC (1984) Karst groundwater activity and landform genesis in modern permafrost regions of Canada. In: LaFleur RG (ed) Groundwater as a Geomorphic Agent. Allen & Unwin, London, pp 340–350Google Scholar
  39. Ford DC (1987) Effects of glaciations and permafrost upon the development of karst in Canada. Earth Surf Process Land 12:507–521.  https://doi.org/10.1002/esp.3290120508CrossRefGoogle Scholar
  40. Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London, p 601CrossRefGoogle Scholar
  41. Ford DC (1996) Karst in a cold climate. In: McCan SB, Ford DC (eds) Geomorphology sans Frontières. Wiley, Chichester, pp 153–179Google Scholar
  42. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, p 562CrossRefGoogle Scholar
  43. French HM (2003) The development of periglacial geomorphology 1: up to 1965. Permafrost Periglac Process 14(1):29–60CrossRefGoogle Scholar
  44. Glasser NF, Hambrey MJ (2001) Styles of sedimentation beneath Svalbard valley glaciers under changing dynamic and thermal regimes. J Geol Soc Lond 158:697–707CrossRefGoogle Scholar
  45. Grimes KG (2012) Surface karst features of the Judbarra/Gregory National Park, Northern Territory, Australia. Helectite 41:15–36Google Scholar
  46. Groom GE (1959) Niche glaciers in Bünsowland, Westspitsbergen. J Glaciol 3(25):368–375CrossRefGoogle Scholar
  47. Hambrey MJ, Fitzsimons SJ (2010) Development of sediment-landform associations at cold glacier margins. Dry Val Antarct Sedimentol 57:857–882CrossRefGoogle Scholar
  48. Haynes VM (1968) The influence of glacial erosion and rock structure on corries in Scotland. Geograf Ann 50A:221–234CrossRefGoogle Scholar
  49. Hevesi A (1980) Adatok a Bükk-hegység negyedidőszaki ősföldrajzi képéhez (Data to the Quarternary Paleogeographical Features of the Bükk Mountains). Földtani Közlemények 110(3–4):25–36 (in Hungarian)Google Scholar
  50. Hughes PD (2004) Quaternary glaciation in the Pindus Moutains Northwest Greece. Ph.D. thesis, University of Cambridge 341 pGoogle Scholar
  51. Hughes PD, Woodward JC (2009) Glacial and periglacial environments. In Woodward JC (ed) The physical geography of the mediterranean. Oxford University Press, Oxford, 700 pGoogle Scholar
  52. Hughes PD,Woodward JC, Gibbard PL, Macklin MG, Gilmour MA, Smith GR (2006) The glacial history of the Pindus Mountains, Greece. J Geol 114:413–434Google Scholar
  53. Hughes PD, Woodward JC, van Calsteren PC, Thomas LE, Adamson KR (2010) Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quat Sci Rev 29(27–28):3690–3708CrossRefGoogle Scholar
  54. Hughes PD, Woodward JC, Calsteren PC, Thomas LE (2011) The glacial history of the Dinaric Alps, Montenegro. Quat Sci Rev 30:3393–3412CrossRefGoogle Scholar
  55. Husen VD (2000) Geological processes during the quaternary. Mitt Österr Geol Ges 92:135–156Google Scholar
  56. Jakucs L (1977) Morphogenetics of karst regions. Adam Hilgar, Bristol, p 284Google Scholar
  57. Jennings JN, Bik MJ (1962) Karst morphology in Australian New Guinea. Nature 194:1036–1038CrossRefGoogle Scholar
  58. Kestin J, Sokolov M, Wakeham A (1978) Viscosity of liquid water in the range −8 °C to 150 °C. J Phys Chem Ref Data 7(3):941–948CrossRefGoogle Scholar
  59. Kiernan K, Lauritzen S-E, Duhig N (2001) Glaciation and cave sediment aggradation around the margins of the Mt. Field Plateau Tasmania. Aust J Earth Sci 48:251–263CrossRefGoogle Scholar
  60. Knight PG (1999) Glaciers. Stanley Thornes, London, p 272Google Scholar
  61. Küfmann C (2014) Solution dynamics at the rock/snow interface during the ablation period in the subnival karst of the Wetterstein Mountains (Northern Calcareous Alps, Germany). Z Geomorfol 58(1):37–57Google Scholar
  62. Kunaver J (1983) Geomorphology of the Kanin Mountains with special regard to the glaciokarst. Geografski Zbornik 22:197–346Google Scholar
  63. Kunaver J (2009) The nature of limestone pavements in the central part of the southern Kanin plateau (Kaninski podi) Western Julian Alps. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features. Karren sculpturing, carsologica, 9. Zalozba ZRC, Institut za raziskovanje krasa ZRC SAZU, Postojna, Ljubljana, Slovènia, pp 299–312Google Scholar
  64. Lauritzen S-E (1984) Evidence of subglacial karstification in Glomdal, Svartisen. Nor Geogr Tidesskr 38(3–4):169–170CrossRefGoogle Scholar
  65. Lauritzen S-E (1986) Kvithola at Fauske, northern Norway: an example of ice-contact speleologenesis. Nor Geogr Tidesskr 66:153–161Google Scholar
  66. Lliboutry LA (1979) Local friction laws for glaciers: a critical review and new openings. J Glaciol 23:67–95CrossRefGoogle Scholar
  67. Loeffler E (1971) The pleistocene glaciation of the Saruwaged Range, territory of New Guinea. Aust Geogr 11(5):463–472.  https://doi.org/10.1080/00049187108702584CrossRefGoogle Scholar
  68. Maire R (1977) Les karsts haut alpins de Plate, du Haut-Giffre et de Suisse Occidentale. Rev Geog Alpine 65:403–423Google Scholar
  69. Maire R (1990) La haute montagne calcaire. Karstologia-Memoires 3 La Ravoire, 731 pGoogle Scholar
  70. Maire R, Pernette JF, Fage LH (1999) Les “glaciers de marble” de Patagonia, Chili. Un karst subpolaire oceanique de la zone austale. Karstologia 33:25–44Google Scholar
  71. Maire R, Jaillet S, Hobléa F (2009) Karren Patagonia a natural laboratory for hydroaeilien dissolution. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features. Karren Sculpturing Carsologica, 9. Zalozba ZRC, Institut za raziskovanje krasa ZRC SAZU, Postojna, Ljubljana, Eslovènia, pp 329–348Google Scholar
  72. Mariko S, Bekku Y, Koizumi H (1994) Effux of carbon dioxide from snow covered forest floors. Ecol Res 9:343–350CrossRefGoogle Scholar
  73. Matthews SW (1987) Ice on the world. Nat Geogr 171(1):78–103Google Scholar
  74. Mavlyudov BR (2006) Glacial karst, why it’s important to research. Acta Carsologica 35(1):55–67CrossRefGoogle Scholar
  75. Menkovič LJ (1994) Glacial traces in the Djeravica area. Prokletije Mountains (in Serbian). Geogr God 30:139–146Google Scholar
  76. Menkovic LJ, Markovic M, Cupkovic T, Pavlovic R, Trivic B, Banjac N (2004) Glacial morphology of Serbia, with comments ont he Pleistocene Glaciation of Montenegro, Macedonia and Albania. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations: extent and chronology. PART 1: Europe. Elsevier pp 379–384Google Scholar
  77. Metcale RC (1984) Field pH determinations in glacial melt waters. J Glaciol 30:106–111CrossRefGoogle Scholar
  78. Miotke FD (1968) Karstmorphologische Studien in der glazialuberformten Hohenstufe der Picos de Europe’ Nordspanien. Jahrbuch der geographischen Gesellschaft zu Hannover Sonderhef, 4:161 pGoogle Scholar
  79. Nicod J (1972) Pays et Paysages du Calcaire. Paris. Presses Universitaire de France, 244 pGoogle Scholar
  80. Nicod J (1978) Phenomenes glacio-karstiques du Devoluy meridional. Rev Geog Alpine 66:149–167Google Scholar
  81. Perritaz L (1996) Le „karst en vagues” des Ait Abdi (Haut-Atlas central, Maroc). Karstologia 28(1):1–12Google Scholar
  82. Plan L, Decker K (2006) Quantitative karst morphology of the Hochschwab plateau, Eastern Alps, Austria. Z Geomorphol 147:29–56Google Scholar
  83. Playford PE (2002) Palaeokarst, pseudokarst, and sequence stratigraphy in Devonian reef complexes of the Canning Basin, Western Australia. In: Keep M, Moss SJ (eds) The sedimentary basins of Western Australia, vol 3. Petroleum Exploration Society of Australia, Symposium, Perth, W.A., pp 763–793Google Scholar
  84. Playford PE (2009) Guidebook to the geomorphology and geology of Devonian reef complexes of the Canning Basin, Western Australia. Geological Survey of Western Australia, Record 5, 72 p. http://www.dmp.wa.gov.au/GSWApublications/
  85. Rau F, Mauz F, Vogt S, Khalsa SJS, Raup B (2005) Illustrated GLIMS glacier classification manual, version 1.0. GLIMS Regional Centre, ‘Antarctic Peninsula’: GLIMS (Global Land Ice Measurement from Space), NSIDC, 36Google Scholar
  86. Ravanel L, Deline P (2008) La face ouest des Drus (massif du Mont-Blanc) évolution de l’instabilité d’une paroi rocheuse dans la haute montagne alpine depuis la fin du petit âge glaciaire. Géomorphol Relief Process env 4(this issue)Google Scholar
  87. Rose L, Vincent P (1983) Some aspects of the morphometry of grikes a micture model approach. In: Paterson K, Sweeting M (eds) New directions in karst, Proceedings of the Agnlo French karst symposium, Geo Books, Norwich pp. 497–515Google Scholar
  88. Rothslisberger H (1972) Water pressure in intra and sub-glacial channels. J Glaciol 11:177–203CrossRefGoogle Scholar
  89. Sauro U (2009) Glaciokarst landforms of the lower Adige and Sarca valleys. In: Gines A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features. Karren sculpturing, carsologica, 9. Zalozba ZRC, Institut za raziskovanje krasa ZRC SAZU, Postojna, Ljubljana, Eslovènia, pp 323–328Google Scholar
  90. Selby MJ (1985) Earth’s changing surface: an introduction to geomorphology. Clarendon Press, Wortley, p 607Google Scholar
  91. Shreve RL (1972) Movement of water in glaciers. J Glaciol 11:205–214CrossRefGoogle Scholar
  92. Smart C (1986) Origin and development of glacio-karst closed depressions in de Europa, Spain. Z Geomorphol N.F. 30(4):423–443Google Scholar
  93. Smart C (2004) Glacierized and glaciated karst. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, London, pp 388–391Google Scholar
  94. Star A, Langenscheidt F (2015) Landforms of high mountains. Springer, Verlag, Berlin Heidelberg.  https://doi.org/10.1007/978-3-642-53715-8
  95. Stepišnik U, Žebre M (2011) Glaciokras Lovčena (E-GeografFF 2). Ljubljana, Znanstvena založba Filozofske fakultete, Oddelek za geografijo, 82 str. http://geo.ff.uni-lj.si/sites/default/files/glaciokras_lovcena_0.pdf. Citirano 5 Feb 2013
  96. Sweeting MM (1966) The weathering of limestones with particular reference to the carbon: ferous Limestone of northern England. In: Dury GH (ed) Essays in geomorphology. Heinemann, London, pp 177–210Google Scholar
  97. Sweeting MM (1973) Karst landforms. Columbia University Press, New York, p 362Google Scholar
  98. Telbisz T (2010) A montenegrói Sinjajevina karsztfennsík felszínalaktani vizsgálata terepi és térinformatikai módszerekkel. Karsztfejlődés XV:85–101Google Scholar
  99. Telbisz T, Dragašice H, Nagy B (2005) A horvátországi Biokovo-hegység karsztmorfológiai jellemzése terepi megfigyelések és digitális domborzatelemzés alapján. Karsztfejlődés X:229–243Google Scholar
  100. Thorn CE, Hall K (2002) Nivation and cryoplanation: the case for scrutiny and integration. Progress Phys Geogr 26:553–560CrossRefGoogle Scholar
  101. Trudgill ST (1972) The influence of drifts and soils on limestone weathering in N.W. Claire, Ireland. Proc Univ Bristol Speleol Soc 13:113–118Google Scholar
  102. Trudgill ST (1985) Limestone geomorphology. Longman, New York, p 196Google Scholar
  103. Veress M (2004) A karszt (The karst) BDF Természetföldrajzi Tanszék, Szombathely, 215 p (in Hungarian)Google Scholar
  104. Veress M (2010) Karst environments. Karren formation in high mountains. Springer, Dordrecht, Heidelberg, London, New York, p 230CrossRefGoogle Scholar
  105. Veress M (2012a) Glacial erosion and karst evolution (karren formation on the surfaces formed by glaciers). In: Veress B, Szigethy J (eds) Horizons in earth science Research, vol 8. Nova, New York, pp 1–94Google Scholar
  106. Veress M (2012b) Morphology and solution relationships of three karren slopes in different environments (Totes Gebirge, Eastern Alps). Z Geomorphol 56(Suppl 2):47–62CrossRefGoogle Scholar
  107. Veress M (2016) Covered karst. Springer, Berlin, Heidelberg, New York, 536 p.  https://doi.org/10.1007/978-94-017-7518-2
  108. Veress M, Lóczy D (2015) Depression of superficial deposit. In: Veress B, Szigethy J (eds) Horizons in earth science research, vol 13. Nova, New York, pp. 37–64Google Scholar
  109. Veress M, Szunyogh G, Zentai Z, Toth G, Czopek I (2006) The effect of the wind on karren formation on the Island of Diego de Almagro (Chile). Z Geomorphol 50(4):425–445Google Scholar
  110. Verstappen HTh (1964) Karst morphology of the star mountains (Central New Guinea) and its relation to lithology and climate. Z Geomorph NF 8:40–49Google Scholar
  111. Vincent P (2009) Limestone pavements in the British Isles. In: Ginés A, Knez M, Slabe T, Dreybrodt W (eds) Karst rock features. Karren sculpturing, carsologica, 9. Zalozba ZRC, Institut za raziskovanje krasa ZRC SAZU, Postojna, Ljubljana, Eslovènia, pp 267–274Google Scholar
  112. Williams PW (1966) Limestone pavements with special reference to western Ireland. Trans Inst Br Geogr 40:155–172CrossRefGoogle Scholar
  113. Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37(1):1–10CrossRefGoogle Scholar
  114. Woodward JC, Macklin MG, Smith GR (2004) Pleistocene glaciation in the mountains of Greece. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology Part 1: Europe. Elsevier, Amsterdam, pp. 155–173Google Scholar
  115. Woodward JC, Hamlin RHB, Macklin MG, Hughes PD, Lewin J (2008) Glacial activity and catchment dynamics in norteast Greece: long-term river behaviour and the slackwater sediment record for the last glacial to interglacial transition. Geomorphology 101:44–67CrossRefGoogle Scholar
  116. Žák K, Richter DK, Filippi M, Živor R, Deininger M, Mangin A, Scholz D (2012) Cryogenic cave carbonate—a new tool for estimation of the Last Glacial permafrost depth of the Central Europe. Clim Past Discuss 8:2145–2185CrossRefGoogle Scholar
  117. Zamora F, Santana A (1979) Charactersitics climaticas de la costa occidental de la Patagonia entre las latitudes 46°40′ y 56°30′ s. An Inst Patagon 10:109–154Google Scholar
  118. Zebre M, Stepišnik U (2015) Glaciokarst landforms and processes of the southern Dinaric Alps. Earth Surf Process Landf.  https://doi.org/10.1002/esp.3731CrossRefGoogle Scholar
  119. Žebre M, Stepišnik U (2015b): Glaciokarst geomorphology of the Northern Dinaric Alps: Snežnik (Slovenia) and Gorski Kotar (Croatia). J Maps.  https://doi.org/10.1080/17445647.2015.1095133
  120. Žebre M, Stepišnik U, Fabekovič G, Grij A, Koblar S, Kodelja B, Pajk V, Stefanic K (2013) Pleistocenska poledenitev Biokova. Delai 39:141–155Google Scholar
  121. Žebre M, Stepišnik U, Colucci RR, Forte E, Monegato G (2016) Evolution of a karst polje influenced by glaciation: the Gomance piedmont polje (northern Dinaric Alps). Geomorphology 257:143–154CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SEK, Department of Physical GeographyEötvös Loránd UniversitySzombathelyHungary
  2. 2.Institute of Geography, Department of Physical GeographyUniversity of PécsPécsHungary

Personalised recommendations