Advertisement

History of Glaciokarst Research

Chapter
  • 282 Downloads
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

In this chapter the research history of glaciokarsts is described from 1880 in the following topics: morphological descriptions (landforms on glaciokarst terrains, cave explorations on glaciokarsts), hydrologic and speleological analysis of subglacial and periglacial karst aquifers, new methodologies in glaciokarst research (dating methods, formal stratigraphy, GIS, computer simulations), age of synthesis, anthropogenic effects and climate change on glaciokarsts.

Keywords

Glaciokarst research Morphological descriptions Hydrologic and speleological investigations New methodologies in glaciokarst research Age of synthesis Anthropogenic effects and climate change on glaciokarsts 

References

  1. Agassiz L (1840) Etudes sur les glaciers. Jent et Gassmann, Neuchatel, p 652CrossRefGoogle Scholar
  2. Allix A (1930) Formes glaciaires sur calcaire à plis autochtones. Annales de Géographie 39(219):299–305CrossRefGoogle Scholar
  3. Atkinson TC (1983) Growth mechanisms of speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada. Arct Alp Res 15:523–536CrossRefGoogle Scholar
  4. Atkinson TC, Harmon RS, Smart PL, Waltham AC (1978) Palaeoclimatic and geomorphic implications of 230Th/234U dates on speleothems from Britain. Nature 272(5648):24–28CrossRefGoogle Scholar
  5. Atkinson TC, Lawson TJ, Smart PL, Harmon RS, Hess JW (1987) New data on speleothem deposition and palaeoclimate in Britain over the last forty thousand years. J Quat Sci 1:67–72CrossRefGoogle Scholar
  6. Aucelli PP, Cesarano M, Di Paola G, Filocamo F, Rosskopf CM (2013) Geomorphological map of the central sector of the Matese Mountains (Southern Italy): an example of complex landscape evolution in a Mediterranean mountain environment. J Maps 9(4):604–616CrossRefGoogle Scholar
  7. Audra P (2004a) Dent de Crolles Cave system, France. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 583–586Google Scholar
  8. Audra P (2004b) France: history. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 768–770Google Scholar
  9. Audra P, Quinif Y (1997) Une cavité de haute-montagne originale: la grotte Téophile (Alpe d’Huez, France) Rôle des paléoclimats pléistocènes dans la spéléogenèse. Spéléochronos 8:23–32Google Scholar
  10. Audra P, Bini A, Gabrovšek F, Häuselmann P, Hobléa F, Jeannin PY, Kunaver J, Monbaron M, Šušteršič F, Tognini P, Trimmel H, Wildberger A (2007) Cave and karst evolution in the Alps and their relation to paleoclimate and paleotopography. Acta Carsologica 36(1):53–68CrossRefGoogle Scholar
  11. Bertrand C, Bertrand G (1971) Le complexe terminal glaciaire du plateau karstique des lacs d’Enol (Picos de Europa, massif Cantabrique central, Espagne du nordouest, province d’Oviedo). Revue Photointerpretation 3:5–18Google Scholar
  12. Bočić N, Pahernik M, Mihevc A (2015) Geomorphological significance of the palaeodrainage network on a karst plateau: The Una-Korana plateau, Dinaric karst, Croatia. Geomorphology 247:55–65CrossRefGoogle Scholar
  13. Bögli A (1960) Kalklösung und karrenbildung. BornträgerGoogle Scholar
  14. Bögli A (1964) Un exemple de complexe glacio-karstique: le schichtreppenkarst. Rev Belge Geogr 88–63Google Scholar
  15. Brook GA, Ford DC (1978) The origin of labyrinth and tower karst and the climatic conditions necessary for their development. Nature 275:493–496CrossRefGoogle Scholar
  16. Chevalier P (1944a) Distinctions morphologiques entre deux types d’érosion souterraine. Revue de géographie alpine 32(3):475–486CrossRefGoogle Scholar
  17. Chevalier P (1944b) Problèmes et hypothèses d’hydrologie souterraine. Les Études rhodaniennes 19(3–4):228–234CrossRefGoogle Scholar
  18. Çiner A, Sarıkaya MA, Yıldırım C (2015) Late pleistocene piedmont glaciations in the eastern mediterranean; insights from cosmogenic 36Cl dating of hummocky moraines in southern Turkey. Quatern Sci Rev 116:44–56CrossRefGoogle Scholar
  19. Corbel J (1952a) A comparison between the karst of the mediterranean region and of north western Europe. Trans Cave Res Group Great Br 2:3–25Google Scholar
  20. Corbel J (1952b) Karsts et glaciers en Laponie. Revue de géographie de Lyon 27(3):257–267CrossRefGoogle Scholar
  21. Corbel J (1952c) Une région karstique d’Irlande: le Burren. Revue de géographie de Lyon 27(1):21–33CrossRefGoogle Scholar
  22. Corbel J (1956) Le karst du Vercors. Revue de géographie de Lyon 31(3):221–241CrossRefGoogle Scholar
  23. Corbel J (1957a) Karsts hauts-alpins. Revue de géographie de Lyon 32(2):135–158CrossRefGoogle Scholar
  24. Corbel J (1957b) Les karsts du Nord-Ouest de l’Europe et de quelques régions de comparaison: étude sur le rôle du climat dans l’érosion des calcaires. Revue de Géographie de Lyon 12Google Scholar
  25. Corbel J (1959) Érosion en terrain calcaire (vitesse d’érosion et morphologie). Annales de Géographie 68(366):97–120CrossRefGoogle Scholar
  26. Cvijić J (1899) Glacial and morphological studies of the mountains of Bosnia, Herzegovina and Monte Negro (in Serbian). Glas SKAN 57, BelgradeGoogle Scholar
  27. Cvijić J (1900) L’époque glaciaire dans la péninsule des Balkans. Annales de Géographie 9:359–372CrossRefGoogle Scholar
  28. Cvijić J (1903) New results on the glacial epoch in the Balkan Peninsula (Novi rezultati o glacijalnoj eposi Balkanskog poluostrva). Glas SKAN 65:185–240Google Scholar
  29. Cvijić J (1913) Ledeno doba u Prokletijama i okolnim planinama (Ice Age in Prokletije and the Surrounding Mountains; in Serbian). Glas SKAN 91, BelgradeGoogle Scholar
  30. Cvijić J (1917) L’époque glaciaire dans la péninsule balkanique. Annales de Géographie 26(141):189–218CrossRefGoogle Scholar
  31. Cvijić J (1920) Geomorfologija, autorizovana skripta po predavanjima. Petrović D (Ur) Ledeno doba i glacijalni oblici Balkanskog poluostrva, pp 434–459Google Scholar
  32. Davis JW (1880) On a group of erratic boulders at Norber, near Clapham, in Yorkshire. Proc Yorks Geol Polytech Soc Geol Soc Lond 7(3):266–273CrossRefGoogle Scholar
  33. Delmas M (2009) Chronologie et impact géomorphologique de glaciation quaternaires dans l’est des Pyrénées. Géomorphologie, Université Panthéon-Sorbonne, ParisGoogle Scholar
  34. Dorale JA, Edwards RL, Alexander EC, Shen CC, Richards DA, Cheng H (2004) Uranium-series dating of speleothems: current techniques, limits, applications. In: Studies of cave sediments. Springer, Boston, pp 177–197Google Scholar
  35. Drew DP (1983) Accelerated soil erosion in a karst area: the Burren, western Ireland. J Hydrol 61(1–3):113–124CrossRefGoogle Scholar
  36. Dreybrodt W (1982) A possible mechanism for growth of calcite speleothems without participation of biogenic carbon dioxide. Earth Planet Sci Lett 58(2):293CrossRefGoogle Scholar
  37. Dyke AS (2004) An outline of North American deglaciation with emphasis on central and northern Canada. Dev Quat Sci 2:373–424Google Scholar
  38. Ehlers J, Gibbard P (2008) Extent and chronology of Quaternary glaciation. Episodes 31(2):211–218Google Scholar
  39. Ehlers J, Gibbard PL, Hughes PD (eds) (2011) Quaternary glaciations—extent and chronology: a closer look. ElsevierGoogle Scholar
  40. Ek C (1964) Note sur les eaux de fonte des glaciers de la Haute Maurienne (Savoie, France): leur action sur les carbonates. Revue belge de Géographie 88(1–2):127–156Google Scholar
  41. Ford DC (1971a) Alpine Karst in the Mt. Castleguard-Columbia Icefield Area, Canadian Rocky Mountains. Arct Alp Res 239–252Google Scholar
  42. Ford DC (1971b) Characteristics of limestone solution in the southern Rocky Mountains and the Selkrik Mountains, Alberta and British Columbia. Can J Earth Sci 8:585–609CrossRefGoogle Scholar
  43. Ford DC (1976) Evidences of multiple glaciation in South Nahanni National Park, Mackenzie Mountains, Northwest Territories. Can J Earth Sci 13(10):1433–1445CrossRefGoogle Scholar
  44. Ford DC (1983a) Effects of glaciations upon karst aquifers in Canada. J Hydrol 61(1–3):149–158CrossRefGoogle Scholar
  45. Ford DC (1983b) Alpine Karst Systems at Crowsnest Pass, Alberta-British Columbia, Canada. J Hydrol 61(1):187–192CrossRefGoogle Scholar
  46. Ford DC (1983c) Concluding discussion. Arct Alp Res 551–554Google Scholar
  47. Ford DC, Schwarcz HP, Drake JJ, Gascoyne M, Harmon RS, Latham AG (1981) Estimates of the age of the existing relief within the Southern Rocky Mountains of Canada. Arct Alp Res 13:1–10CrossRefGoogle Scholar
  48. Gascoyne M, Ford DC (1984) Uranium series dating of speleothems. II: results from the Yorkshire Dales and implications for cave development and quaternary climates. Cave Sci 11(2):65–85Google Scholar
  49. Gascoyne M, Currant AP, Lord TC (1981) Ipswichian fauna of Victoria Cave and the marine palaeoclimatic record. Nature 294(5842):652–654CrossRefGoogle Scholar
  50. Goldie H (1973) The limestone pavements of Craven. Trans Cave Res Group Great Br 15:175–190Google Scholar
  51. Gremaud V, Goldscheider N, Savoy L, Favre G, Masson H (2009) Geological structure recharge processes and underground drainage of a glacierized karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps. Hydrogeol J 17:1833–1848CrossRefGoogle Scholar
  52. Grund A (1902) Neue Eiszeitspuren aus Bosnien und der Hercegovina. Globus 78(9):173–174Google Scholar
  53. Grund A (1910) Beiträge zur Morphologie des Dinarischen Gebirges. Geographische Abhandlungen 9(3):230Google Scholar
  54. Hallet B (1976) Deposits formed by subglacial precipitation of CaCO3. Geol Soc Am Bull 87(7):1003–1015CrossRefGoogle Scholar
  55. Halliday WR (2004) America, north: history. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 102–109Google Scholar
  56. Harmon RS, Thompson P, Schwarcz HP, Ford DC (1975) Uranium series dating of speleothems. Nail Speleol Soc Bull 37(2):21–33Google Scholar
  57. Harmon RS, Ford DC, Schwarcz HP (1977) Interglacial chronology of the Rocky and Mackenzie Mountains based upon 230Th–234U dating of calcite speleothems. Can J Earth Sci 14(11):2543–2552CrossRefGoogle Scholar
  58. Häuselmann P (2007) How to date nothing with cosmogenic nuclides. Acta Carsologica 36(1):93–100CrossRefGoogle Scholar
  59. Häuselmann P, Granger DE (2005) Dating of caves by cosmogenic nucleides: method, possibilities, and the Siebenhengste example (Switzerland). Acta Carsologica 34(1):43–50Google Scholar
  60. Häuselmann P, Lauritzen SE, Jeannin PY, Monbaron M (2008) Glacier advances during the last 400 ka as evidenced in St. Beatus Caves (BE, Switzerland). Quatern Int 189(1):173–189CrossRefGoogle Scholar
  61. Hobléa F, Häuselmann P, Kubik P (2011) Cosmogenic nuclide dating of cave deposits of Mount Granier (Hauts de Chartreuse Nature Reserve, France): morphogenic and palaeogeographical implications. Géomorphol: relief, processus, environnement 17(4):395–406Google Scholar
  62. Holzkämper S, Spötl C, Mangini A (2005) High-precision constraints on timing of Alpine warm periods during the middle to late Pleistocene using speleothem growth periods. Earth Planet Sci Lett 236(3):751–764CrossRefGoogle Scholar
  63. Horn G (1935) Űber die Bildung von Karsthöhlen unter einem Gletcher. Nor Geogr Tidsskr 5:494–498CrossRefGoogle Scholar
  64. Horn G (1937) Űber einige Karsthöhlen in Norwegen. Mitteilungen für Höhlen und Karstforschung 1–15Google Scholar
  65. Horn G (1947) Karsthuler i Nordland. Norg Geol Unders 165:1–177Google Scholar
  66. Hughes TM (1901) Ingleborough. Part I. physical geography. Proc Yorks Geol Polytech Soc 14:125–150CrossRefGoogle Scholar
  67. Hughes PD, Woodward JC (2017) Quaternary glaciation in the Mediterranean mountains: a new synthesis. Geol Soc Lond Spec Publ 433(1):1–23CrossRefGoogle Scholar
  68. Hughes PD, Gibbard PL, Woodward JC (2005) Quaternary glacial records in mountain regions: a formal stratigraphical approach. Episodes-News Mag Int Union Geol Sci 28(2):85–92Google Scholar
  69. Hughes PD, Woodward JC, Van Calsteren PC, Thomas LE (2011) The glacial history of the Dinaric Alps, Montenegro. Quatern Sci Rev 30(23):3393–3412CrossRefGoogle Scholar
  70. Jakucs L (1977) Morphogenetics of karst regions. WileyGoogle Scholar
  71. Jiménez-Sánchez M, Rodríguez-Rodríguez L, García-Ruiz JM, Domínguez-Cuesta MJ, Farias P, Valero-Garcés B, Moreno A, Rico M, Valcárcel M (2013) A review of glacial geomorphology and chronology in northern Spain: timing and regional variability during the last glacial cycle. Geomorphology 196:50–64CrossRefGoogle Scholar
  72. Judson D (2004) Britain and Ireland: history. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 341–345Google Scholar
  73. Kotarba A, Hercman H, Dramis F (2001) On the age of Campo Imperatore glaciations, Gran Sasso Massif, Central Italy. Geografia Fisica e Dinamica Quaternaria 24:65–69Google Scholar
  74. Larson EB, Mylroie JE (2013) Quaternary glacial cycles: karst processes and the global CO2 budget. Acta Carsologica 42(2/3):197–202Google Scholar
  75. Lauritzen SE (1981) Glaciated karst in Norway. In: Proceedings of 8th International Speleological Congress. Bowling Green, KY, USA, pp 410–411Google Scholar
  76. Lauritzen SE (1982) The paleocurrents and morphology of Pikhåggrottene, Svartisen, North Norway. Nor Geogr Tidsskr 36:183–209CrossRefGoogle Scholar
  77. Lauritzen SE (1983) Arctic and Alpine Karst symposium. Program and Field Guide, Department of Chemistry, University of Oslo, 89 pGoogle Scholar
  78. Lauritzen SE (1984) Evidence of subglacial karstification in Glomdal, Svartisen, Norway. Nor Geogr Tidsskr 38:169–170CrossRefGoogle Scholar
  79. Lauritzen SE (1986) Kvithola at Fauske; Northern Norway: an example of ice-contact speleogenesis. Nor Geol Tidsskr 66:153–161Google Scholar
  80. Lauritzen SE, Gascoyne M (1980) The first radiometric dating of Norwegian stalagmites–Evidence of pre-Weichselian karst caves. Nor Geogr Tidsskr 34:77–82CrossRefGoogle Scholar
  81. Loubiere JF (1987) Observation preliminaires sur les cavites de la region du Lac Centrum (Nord-est Grönland). Karstologia 9(1):7–16CrossRefGoogle Scholar
  82. Luetscher M, Hoffmann DL, Frisia S, Spötl C (2011) Holocene glacier history from alpine speleothems, Milchbach cave, Switzerland. Earth Planet Sci Lett 302(1):95–106CrossRefGoogle Scholar
  83. Magaritz M (1973) Precipitation of secondary calcite in glacier areas; carbon and oxygen isotopic composition of calcites from Mt. Hermon, Israel, and the European Alps. Earth Planet Sci Lett 17(2):385–390CrossRefGoogle Scholar
  84. Maire R (1976) Recherches géomorphologiques sur les karsts haut-alpins du Haut-Giffre et de Suisse occidentale. Thèse 3e cycle, Université de Nice, 456 pGoogle Scholar
  85. Maire R (1990) La haute montagne calcaire: karsts, cavités, remplissages, paléoclimats, Quaternaire. Karstologia-Mémoires 3:1–731Google Scholar
  86. Maire R, l’Équipe Ultima Esperanza, Pernette JF, Fage LH (1999) Les “glaciers de marbre” de Patagonie, Chili – Un karst subpolaire océanique de la zone australe. Karstologia 33(1):25–40Google Scholar
  87. Messerli B (1967) Die eiszeitliche und die gegenwärtige Vergletscherung im Mittelmeerraum. Geographica Helvetica 22(3):105–228CrossRefGoogle Scholar
  88. Milivojević M, Menković L, Ćalić J (2008) Pleistocene glacial relief of the central part of Mt. Prokletije (Albanian Alps). Quatern Int 190(1):112–122CrossRefGoogle Scholar
  89. Miotke FD (1968) Karstmorphologische studien in der glazialüberformten Hohenstufe der Picos de Europa, Nordspanien. Selbtverlag der geografischen Gessellschaft, Hannover, 161 pGoogle Scholar
  90. Moles NR, Moles RT (2002) Influence of geology, glacial processes and land use on soil composition and quaternary landscape evolution in the Burren National Park, Ireland. Catena 47(4):291–321CrossRefGoogle Scholar
  91. Oxaal L (1914) Kalkstenshuler i Ranen. Norg Geol Unders 69:1–47Google Scholar
  92. Palmer AN (1984) Objectives and current status of alpine and arctic karst research. Nor Geogr Tidsskr 38(3–4):145–150CrossRefGoogle Scholar
  93. Pavuza R, Stummer G (1999) The Dachstein caves: the Dachstein Region—its karst and its caves. In: Mandl GW (ed) FOREGS `99 Vienna. 150 Years Geological Survey of Austria. Field trip guide: Vienna-Dachstein-Hallstatt-Salzkammergut, Wien, vol 113, no 43, pp 101–105Google Scholar
  94. Penck A (1885) La Période glaciaire dans les Pyrénées. Bulletin de la Societe d’histoire naturelle de Toulouse 19:105–200Google Scholar
  95. Penck A (1900) Die Eiszeit auf der Balkanhalbinsel. Globus 78:133–178Google Scholar
  96. Penck A, Brückner E (1901) Die Alpen im Eiszeitalter: In 3 Bden, TauchnitzGoogle Scholar
  97. Popov IV, Gvozdetskiy NA, Chiksishev AG, Kudelin BI (1972) Karst in U.S.S.R. In: Herak M, Stringfield VT (eds) Karst, important karst regions of the northern hemisphere. Elsevier, pp 355–416Google Scholar
  98. Reid C (1887) On the origin of dry chalk valleys and the coombe rock. Q J Geol Soc 43:364–373CrossRefGoogle Scholar
  99. Roglić J (1961) Glaciation of the Dinaric Mountains and its Effect on Karst. Papers of VI. International Congress Quat, Warszaw, pp 293-299Google Scholar
  100. Salvigsen O, Elgersma A (1985) Large-scale karst features and open taliks at Vardeborgsletta, outer Isfjorden, Svalbard. Polar Res 3(2):145–153CrossRefGoogle Scholar
  101. Sarıkaya MA, Zreda M, Çiner A, Zweck C (2008) Cold and wet last glacial maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quatern Sci Rev 27(7):769–780CrossRefGoogle Scholar
  102. Sarıkaya MA, Çiner A, Haybat H, Zreda M (2014) An early advance of glaciers on Mount Akdağ, SW Turkey, before the global last glacial maximum; insights from cosmogenic nuclides and glacier modeling. Quatern Sci Rev 88:96–109CrossRefGoogle Scholar
  103. Sawicki L (1911) Die eiszeitliche Vergletscherung des Orjen in Süddalmatien. Verlag von Gebrüder BorntraegerGoogle Scholar
  104. Shaw T (2004) France: history. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 723–729Google Scholar
  105. Skoglund RØ, Lauritzen SE, Gabrovšek F (2010) The impact of glacier ice-contact and subglacial hydrochemistry on evolution of maze caves: a modelling approach. J Hydrol 388(1):157–172CrossRefGoogle Scholar
  106. Smart CC (1983) The hydrology of the castleguard karst, columbia icefields, Alberta, Canada. Arct Alp Res 471–486Google Scholar
  107. Smart PL (1986) Origin and development of glacio-karst closed depressions in the Picos de Europa, Spain. Zeitschrift für Geomorphologie 30:423–443Google Scholar
  108. Smart CC (2004) Glacierized and glaciated karst. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 804–809Google Scholar
  109. Smith DI, Atkinson TC (1976) Process, landforms and climate in limestone regions. In: Derbyshire E (ed) Geomorphology and Ciimale. Wiley, London, pp 367–409Google Scholar
  110. Spötl C, Mangini A (2007) Speleothems and paleoglaciers. Earth Planet Sci Lett 254(3):323–331CrossRefGoogle Scholar
  111. Spötl C, Mangini A, Frank N, Eichstädter R, Burns SJ (2002a) Start of the last interglacial period at 135 ka: evidence from a high Alpine speleothem. Geology 30(9):815–818CrossRefGoogle Scholar
  112. Spötl C, Unterwurzacher M, Mangini A, Longstaffe FJ (2002b) Carbonate speleothems in the dry, inneralpine Vinschgau valley, northernmost Italy: witnesses of changes in climate and hydrology since the last glacial maximum. J Sediment Res 72(6):793–808CrossRefGoogle Scholar
  113. Stepišnik U, Ferk M, Kodelja B, Medenjak G, Mihevc A, Natek K, Žebre M (2009) Glaciokarst of western Orjen, Montenegro. Cave Karst Sci 36(1):21–28Google Scholar
  114. Stepišnik U, Grlj A, Radoš D, Žebre M (2016) Geomorphology of Blidinje, Dinaric Alps (Bosnia and Herzegovina). J Maps 12(sup1):163–171Google Scholar
  115. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingólfsson Ó, Jakobsson M, Kjær KH, Larsen E, Lokrantz H, Lunkka JP, Lyså A, Mangerud J, Matiouchkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late Quaternary ice sheet history of northern Eurasia. Quatern Sci Rev 23(11):1229–1271Google Scholar
  116. Sweeting MM (1966) The weathering of limestones with particular reference to the Carboniferous limestones of northern England. In: Dury GH (ed) Essays in Geomorphology. Heinemann, London, pp 177–210Google Scholar
  117. Telbisz T (2010a) Morphology and GIS-analysis of closed depressions in Sinjajevina Mts (Montenegro) Karst Dev 1(1):41–47Google Scholar
  118. Telbisz T (2010b) Glacio-karst features of the Sinjajevina Mts (Montenegro): an overview and DEM-analysis. Karst Dev 1(1):17–22Google Scholar
  119. Telbisz T, Mari L, Szabó L (2011) Geomorphological characteristics of the Italian side of Canin massif (Julian Alps) using digital terrain analysis and field observations. Acta Carsologica 40(2):255–266CrossRefGoogle Scholar
  120. Telbisz T, Látos T, Deák M, Székely B, Koma Z, Standovár T (2016) The advantage of LiDAR digital terrain models in doline morphometry compared to topographic map based datasets – Aggtelek Karst (Hungary) as an example. Acta Carsologica 45(1):5–18CrossRefGoogle Scholar
  121. Veress M (2010) Karst environments: karren formation in high mountains. Springer Science Business MediaGoogle Scholar
  122. Veress M (2017) Solution doline development on glaciokarst in alpine and Dinaric areas. Earth Sci Rev 173:31–48CrossRefGoogle Scholar
  123. Veress M, Szunyogh G, Zentai Z, Tóth G, Czöpek I (2006) The effect of wind on karren formation on the island of Diego de Almagro (Chile). Zeitschrift für Geomorphologie 50(4):425–445Google Scholar
  124. Viles HA (2003) Conceptual modeling of the impacts of climate change on karst geomorphology in the UK and Ireland. J Nat Conserv 11(1):59–66CrossRefGoogle Scholar
  125. Vincent PJ (1995) Limestone pavements in the British Isles: a review. Geogr J 161:265–274CrossRefGoogle Scholar
  126. Vincent PJ, Wilson P, Lord TC, Schnabel C, Wilcken KM (2010) Cosmogenic isotope (36Cl) surface exposure dating of the Norber erratics, Yorkshire Dales: further constraints on the timing of the LGM deglaciation in Britain. Proc Geol Assoc 121:24–31CrossRefGoogle Scholar
  127. Waltham T (1971) British Karst Research Expedition in Himalaya – Report, 99 pGoogle Scholar
  128. Waltham AC, Simms MJ, Farrant AR, Goldie HS (1997) Karst and caves of Great Britain. In: Geological conservation review, vol 12, 358 pGoogle Scholar
  129. Williams PW (1966) Limestone pavements with special reference to western Ireland. Trans Inst Br Geogr 40:155–172CrossRefGoogle Scholar
  130. Wilson P, Barrows TT, Lord TC, Vincent PJ (2012) Surface lowering of limestone pavement as determined by cosmogenic (36Cl) analysis. Earth Surf Proc Land 37:1518–1526CrossRefGoogle Scholar
  131. Wilson P, Lord T, Rodés Á (2013a) Deglaciation of the eastern Cumbria glaciokarst, northwest England, as determined by cosmogenic nuclide (10Be) surface exposure dating, and the pattern and significance of subsequent environmental changes. Cave Karst Sci 40(1):22–27Google Scholar
  132. Wilson P, Schnabel C, Wilcken KM, Vincent PJ (2013b) Surface exposure dating (36Cl and 10Be) of post-Last Glacial Maximum valley moraines, Lake District, northwest England: some issues and implications. J Quat Sci 28(4):379–390CrossRefGoogle Scholar
  133. Woodward JC, Macklin, MG, Smith GR (2004) Pleistocene glaciation in the mountains of Greece. In: Quaternary glaciations—extent and chronology. Part I: Europe. Elsevier, Amsterdam, pp 155–173Google Scholar
  134. Žebre M, Stepišnik U (2015a) Glaciokarst geomorphology of the Northern Dinaric Alps: Snežnik (Slovenia) and Gorski Kotar (Croatia). J Maps 12(5):873–881Google Scholar
  135. Žebre M, Stepišnik U (2015b) Glaciokarst landforms and processes of the southern Dinaric Alps. Earth Surf Proc Land 40(11):1493–1505CrossRefGoogle Scholar
  136. Zeng C, Gremaud V, Zeng H, Liu ZH, Goldscheider N (2012) Temperature-driven meltwater production and hydrochemical variations at a glaciated alpine karst aquifer: implication for the atmospheric CO2 sink under global warming. Environ Earth Sci 65:2285–2297CrossRefGoogle Scholar
  137. Zeng C, Liu Z, Yang J, Yang R (2015) A groundwater conceptual model and karst-related carbon sink for a glacierized alpine karst aquifer, Southwestern China. J Hydrol 529:120–133CrossRefGoogle Scholar
  138. Zreda M, Çiner A, Sarıkaya MA, Zweck C, Bayarı S (2011) Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene-Holocene boundary. Geology 39(11):1051–1054CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physical GeographyEötvös Loránd UniversityBudapestHungary
  2. 2.SEK, Department of Physical GeographyEötvös Loránd UniversitySzombathelyHungary

Personalised recommendations