Skip to main content

Biotechnological Means for Genetic Improvement in Castor Bean as a Crop of the Future

  • Chapter
  • First Online:
The Castor Bean Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Profitable cultivation of castor bean is beset with problems of vulnerability of cultivars and hybrids to a multitude of insect pests and diseases. The presence of the toxic proteins ricin and hyperallergenic Ricinus communis agglutinin (RCA) in the endosperm restricts the use of deoiled seed cake as cattle feed. Due to this crop’s low genetic diversity, genetic engineering can be an efficient approach to introduce resistance to biotic and abiotic stresses as well as seed quality traits. Recently, castor oil gained attention as a sustainable second-generation feedstock for biojet fuel that would reduce carbon dioxide emissions. Because of a growing interest in castor oil as a biofuel and the presence of the powerful toxin ricin in its seed, metabolic pathways and regulatory genes involved in both oil and ricin production have been analyzed and characterized. Genetic engineering of castor bean offers new possibilities to increase oil yield and oxidative stability, confers stress tolerance, and improves other agronomics traits, such as reduced plant height to facilitate mechanical harvesting. However, difficulties in tissue culture-based regeneration and poor reproducibility of results are major bottlenecks for genetic transformation of castor bean. Despite advances in tissue culture research over the past four decades, direct or callus-mediated adventitious shoot regeneration systems that are genotype-independent remain a much sought-after goal in castor bean. Genetic transformation attempts to develop insect-resistant and ricin-free transgenic castor bean lines have been based on shoot proliferation from meristematic tissues. This chapter describes new transformation methods under development and the progress achieved so far in genetic engineering of castor bean for agronomically desirable attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn YJ, Chen GQ (2008) In vitro regeneration of castor (Ricinus communis L.) using cotyledon explants. HortScience 43:215–219

    Article  CAS  Google Scholar 

  • Ahn YJ, Vang L, McKeon TA, Chen GQ (2007) High-frequency plant regeneration through adventitious shoot formation in castor (Ricinus communis L.). Vitro Cell Dev Biol Plant 43:9–15

    Article  CAS  Google Scholar 

  • Alam I, Sharmin SM, Mondal SC, Alam MJ, Khalekuzzaman M et al (2010) In vitro micropropagation through cotyledonary node culture of castor bean (Ricinus communis L.). Aust J Crop Sci 4:81–84

    CAS  Google Scholar 

  • Ankineedu G, Sharma KD, Kulkarni LG (1968) Effect of fast-neutrons and gamma rays on castor. Indian J Genet 28:31–39

    Google Scholar 

  • Arroyo-Caro JM, Chileh T, Kazachkov M, Zou J, Alonso DL, Garcia-Maroto F (2013) The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant Sci 200:29–40

    Article  Google Scholar 

  • Athma P, Reddy TP (1983) Efficiency of callus initiation and direct regeneration from different explants of castor (Ricinus communis L.). Curr Sci 52:256–257

    Google Scholar 

  • Auld DL, Rolfe RD, McKeon TA (2001) Development of castor with reduced toxicity. J New Seeds 3:61–69

    Article  Google Scholar 

  • Auld DL, Pinkerton SD, Boroda E, Lombard KA, Murphy CK et al (2003) Registration of TTU-LRC castor germplasm with reduced levels of ricin and RCA120. Crop Sci 43:746–747

    Article  Google Scholar 

  • Bahadur B, Reddy KRK, Rao GP (1992) Regeneration potential of callus cultures in castor (Ricinus communis L.). Asian J Plant Sci 4:13–18

    Google Scholar 

  • Baldanzi M, Pugliesi C (1998) Selection for non-branching in castor, Ricinus communis L. Plant Breed 117:392–394

    Article  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  Google Scholar 

  • Brigham RD (1980) Castor. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. ASA, CSSA, Madison, WI, pp 235–247

    Google Scholar 

  • Brown P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic and densipolic acids in seeds of transgenic arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113:933–942

    Article  Google Scholar 

  • Burgal J, Shockey J, Lu CF, Dyer J, Larson T et al (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831

    Article  CAS  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J et al (2010) Draft genome sequence of the oilseed species Ricinus Communis. Nat Biotechnol 28:951–956. https://doi.org/10.1038/nbt.1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GQ (2009) Engineering Lesquerella for safe castor oil production. The association for the advancement of industrial crops (AAIC). 21st annual meeting in Termas de Chillan, Chillan, Chile, 14–19 Nov 2009

    Google Scholar 

  • Chen GQ, Turner C, He X, Nguyen T, McKeon TA et al (2007) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in castor bean (Ricinus communis L.). Lipids 42:263–274

    Article  CAS  Google Scholar 

  • Chen Y, Wang Y, Wang Y, Huang F, Li G et al (2013) Construction of RNAi binary vector of ricin a chain and its transformation. Acta Bot Boreali-Occidentalia Sin 01

    Google Scholar 

  • Duraimurugan P, Lakshminarayana M, Vimala Devi PS (2015) Comparative efficacy of microbial, botanical and chemical insecticides against lepidopteran pests in castor. Ecoscan 9:7–10

    Google Scholar 

  • Frankel AE (ed) (1992) Genetically engineered toxins. Marcel Dekker, New York

    Google Scholar 

  • Ganesh Kumari K (2010) In vitro culture and Agrobacterium-mediated genetic transformation studies in castor (Ricinus communis L. cv. TMV5) for improved tolerance to fungal diseases. Ph.D. thesis. Bharathidasan University, Tiruchirapalli, Tamil Nadu, India

    Google Scholar 

  • Ganesh Kumari K, Ganesan M, Jayabalan N (2008) Somatic embryogenesis and plant regeneration in Ricinus communis L. Biol Plant 52:17–25

    Article  Google Scholar 

  • Gedil M, Kolade F, Raji A, Ingelbrecht I, Dixon A (2009) Development of molecular genomic tools for verification of intergeneric hybrids between castor bean (Ricinus communis L.) and cassava (Manihot esculenta Crantz). J Food Agric Environ 7:534–539

    CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  Google Scholar 

  • Genyu Z (1988) Callus formation and plant regeneration from young stem segments of Ricinus communis L. Genetic Manipulation in Crops. IRRI, Cassell Tycooly, p 393

    Google Scholar 

  • Green A, Singh S, Zhou XR (2008) Reverse engineering of novel industrial fatty acids in seed oils. In: Presented in the 7th International Safflower Conference, Wagga Wagga, Australia

    Google Scholar 

  • Harlan JR (1976) Genetic resources in wild relatives of crops. Crop Sci 16:329–333

    Article  Google Scholar 

  • Hartley MR, Lord JM (1993) Structure, function and applications of ricin and related cytotoxic proteins. In: Grierson D (ed) Biosynthesis and manipulation of plant products, vol 3. Blackie Academic and Professional Publishers, London, pp 210–239

    Chapter  Google Scholar 

  • He X, Turner C, Chen GQ, Lin JT, McKeon TA (2004) Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean. Lipids 39:311–318

    Article  CAS  Google Scholar 

  • James C (2016) Global status of commercialized biotech/GM Crops: ISAAA Brief No. 52. ISAAA, Ithaca, NY

    Google Scholar 

  • Ji XJ, Mao X, Hao QT, Liu BL, Xue JA et al (2018) Splice variants of the castor WRI1 gene upregulates fatty acid and oil biosynthesis when expressed in tobacco leaves. Intl J Mol Sci 19:146

    Article  Google Scholar 

  • Kermode AR, Pramanik SK, Bewley JD (1989) The role of maturation drying in the transition from seed development to germination. VI. Desiccation-induced changes in messenger RNA populations within the endosperm of Ricinus communis L. seeds. J Exp Bot 40:33–41

    Article  CAS  Google Scholar 

  • Kim HU, Lee KR, Go YS, Jung JH, Suh MC et al (2011) Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol 52:983–993

    Article  CAS  Google Scholar 

  • Kim HU, Jung SJ, Lee KR, Kim EH, Lee SM et al (2014) Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. FEBS Open Bio 4:25–32

    Article  CAS  Google Scholar 

  • Kolte SJ (1995) Insect pests of castor. In: Kolte SJ (ed) Castor diseases and crop improvement. Shipra Publications, New Delhi, India, p 95p

    Google Scholar 

  • Komor E (1977) Sucrose uptake by cotyledons of Ricinus communis L. Characteristics, mechanism and regulation. Planta 137:119–131

    Article  CAS  Google Scholar 

  • Kulkarni LG, Ankineedu G (1966) Isolation of pistillate lines in castor for exploitation of hybrid vigour. Indian J Genet 26:363–365

    Google Scholar 

  • Kumar MA, Rohini S, Kalpana N, Ganesh PT, Udayakumar M (2011) Amenability of castor to an Agrobacterium-mediated in planta transformation strategy using a cry1AcF gene for insect tolerance. J Crop Sci Biotechnol 14:125–132

    Article  Google Scholar 

  • Kumar SD, Tarakeswari M, Lakshminarayana M, Sujatha M (2016) Toxicity of Bacillus thuringiensis crystal proteins against eri silkworm, Samia cynthia ricini (Lepidoptera: Saturniidae). J Invertebr Pathol 138:116–119

    Article  Google Scholar 

  • Lakshminarayana M, Raoof MA (2005) Insect pests and diseases of castor and their management. Directorate of Oilseeds Research, Hyderabad, India, p 78

    Google Scholar 

  • Lakshminarayana M, Sujatha M (2005) Toxicity of Bacillus thuringiensis var. Kurstaki strains and purified crystal proteins against Spodoptera litura (Fabr.) on castor, Ricinus communis (L.). J Oilseeds Res 22:433–434

    Google Scholar 

  • Li W, Yong G, Wang Y, Wang CA (2014) Agrobacterium-mediated genetic transformation and regeneration of low-toxicity variety of castor (Ricinus communis L.). J Pure Appl Microbiol 8:1387–1395

    CAS  Google Scholar 

  • Li W, Li Z, Zhai Y, Wang C (2015a) A highly efficient castor regeneration system identified through WUSCHEL expression. Chem Eng Trans 46:1393–1398

    Google Scholar 

  • Li W, Zhai Y, Yang G, Li Z, Wang C (2015a) Optimization of regeneration technology on an energy crop-castor (Ricinus communis L.). In: International Power Electronics and Materials Engineering Conference (IPEMEC 2015), Atlantis Press, pp 1024–1026

    Google Scholar 

  • Lin JT, Chen JM, Liao LP, McKeon TA (2002) Molecular species of acylglycerols incorporating radiolabeled fatty acids from castor (Ricinus communis L.) microsomal incubations. J Agric Food Chem 50:5077–5081

    Article  CAS  Google Scholar 

  • Lippincott JA, Haberlin GT (1965) The induction of leaf tumours by Agrobacterium tumefaciens. Amer J Bot 52:396–403

    Article  CAS  Google Scholar 

  • Lord JM, Lamb FI, Roberts LM (1984) Ricin: structure, biological activity and synthesis. Oxford Surveys Plant Mol Cell Biol 1:85–101

    CAS  Google Scholar 

  • Malathi B, Ramesh S, Rao KV, Reddy VD (2006) Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147:441–449

    Article  CAS  Google Scholar 

  • Malik VS (2013) Use of genome editing technologies for improving castor bean and guar. J Plant Biochem Biotechnol 22:357–358

    Article  Google Scholar 

  • McKeon TA, Chen GQ (2003) Transformation of Ricinus communis, the castor plant. US Patent No 6.620.986

    Google Scholar 

  • Molina SM, Schobert C (1995) Micropropagation of Ricinus communis L. J Plant Physiol 147:270–272

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    Article  CAS  Google Scholar 

  • Orlich G, Komor E (1992) Phloem loading in Ricinus cotyledon sucrose pathways via the mesophyll and the apoplasm. Planta 187:460–474

    Article  CAS  Google Scholar 

  • Patel MK, Joshi M, Mishra A, Jha B (2015) Ectopic expression of SbNHX1 gene in transgenic castor (Ricinus communis L.) enhances salt stress by modulating physiological process. Plant Cell Tiss Org Cult 122:477–490

    Article  CAS  Google Scholar 

  • Peles Y, Lemer A, Meiri A, Dodek I, Gelfman S et al (2017) Determinate castor. Patent No WO 2017009847 A1

    Google Scholar 

  • Pinkerton SD, Rolfe RD, Auld DL, Ghetie V, Lauterbach BF (1999) Selection of castor with divergent concentrations of ricin and Ricinus communis agglutinin. Crop Sci 39:353–357

    CAS  Google Scholar 

  • Reddy KRK, Bahadur B (1989) In vitro multiplication of castor. In: Farook SA, Khan IA (eds) Recent advances in genetics and cytogenetics. Premier Publishers, Hyderabad, India, pp 479–482

    Google Scholar 

  • Reddy KRK, Ramaswamy N, Bahadur B (1987a) Cross incompatibility between Ricinus and Jatropha. Plant Cell Incomp Newslett 19:60–65

    Google Scholar 

  • Reddy KRK, Rao GP, Bahadur B (1987b) In vitro morphogenesis from seedling explants and callus cultures of castor (Ricinus communis L.). Phytomorphology 37:337–340

    Google Scholar 

  • Richharia RH (1937) A note on the cytogenetics of Ricinus communis L. Indian J Agric Sci 7:707–711

    Google Scholar 

  • Robinson SP, Beevers H (1981) Amino acid transport in germinating castor bean seedlings. Plant Physiol 68:560–566

    Article  CAS  Google Scholar 

  • Rojas-Barros P, de Haro A, Fernandez-Martinez JM (2005) Inheritance of high oleic/low ricinoleic acid content in the seed oil of castor mutant OLE-1. Crop Sci 45:157–162

    Article  CAS  Google Scholar 

  • Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 27:1509–1519

    Article  CAS  Google Scholar 

  • Sangduen N, Pongtongkam P, Ratisoontorn P, Jampatas R, Suputtitada S et al (1987) Tissue culture and plant regeneration of castor (Ricinus communis L.). SABRAO J Breed Genet 19:144

    Google Scholar 

  • Sarvesh A, Ram Rao DM, Reddy TP (1992) Callus initiation and plantlet regeneration from epicotyl and cotyledonary explants of castor (Ricinus communis L.). Adv Plant Sci 5:124–128

    Google Scholar 

  • Schobert C, Komor E (1992) Transport of nitrate and ammonia into the phloem and the xylem of Ricinus communis seedlings. Plant Physiol 140:306–309

    Article  CAS  Google Scholar 

  • Scholz V, da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg 32:95–100

    Article  CAS  Google Scholar 

  • Sehnke PC, Ferl RJ (1999) Processing of preproricin in transgenic tobacco. Protein Expr Purif 15:188–195

    Article  CAS  Google Scholar 

  • Sehnke PC, Pedrosa L, Paul AL, Frankel AE, Ferl RJ (1994) Identification of vacuolar expression of active, processed ricin in transgenic tobacco. J Biol Chem 269:22473–22476

    CAS  PubMed  Google Scholar 

  • Severino LS, Cordoba-Gaona OJ, Zanotto MD, Auld DL (2012) The influence of the caruncle on the germination of castor seed under high salinity or low soil water content. Seed Sci Technol 40:139–143

    Article  Google Scholar 

  • Sharma HC, Sharma KK, Seetharama N, Ortiz R (2000) Prospects for using transgenic resistance to insects in crop improvement. Mol Biol Genet 3:1–28

    Google Scholar 

  • Singh D (1976) Castor-Ricinus communis L. (Euphorbiaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 84–86

    Google Scholar 

  • Singh PC, Kumar M, Chaturvedi CP, Yadav D, Tuli R (2004) Development of a hybrid δ-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest, Spodoptera litura. Transgen Res 13:397–410

    Article  CAS  Google Scholar 

  • Sousa NL, Cabral GB, Vieira PM, Baldoni AB, Francisco JL et al (2017) Bio-detoxification of ricin in castor bean (Ricinus communis L.) seeds. Sci Rep 7:15385

    Article  Google Scholar 

  • Sujatha M (1996) Genetic and tissue culture studies in castor (Ricinus communis L.) and related genera. Ph.D. thesis, Osmania University, Hyderabad, India

    Google Scholar 

  • Sujatha M, Lakshminarayana M (2005) Susceptibility of castor semilooper, Achaea janata L. to insecticide crystal proteins from Bacillus thuringiensis. Indian J Plant Protec 33:286–287

    Google Scholar 

  • Sujatha M, Reddy TP (1998) Differential cytokinin effects on the stimulation of in vitro shoot proliferation from meristematic explants of castor (Ricinus communis L.). Plant Cell Rep 17:561–566

    Article  CAS  Google Scholar 

  • Sujatha M, Reddy TP (2007) Promotive effect of lysine monohydrochloride on morphogenesis in cultured seedling and mature plant tissues of castor (Ricinus communis L.). Indian J Crop Sci 2:279–286

    Google Scholar 

  • Sujatha M, Sailaja M (2005) Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 23:803–810

    Article  CAS  Google Scholar 

  • Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26:424–435

    Article  CAS  Google Scholar 

  • Sujatha M, Lakshminarayana M, Tarakeswari M, Singh PK, Rakesh Tuli R (2009) Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.). Plant Cell Rep 28:935–946

    Article  CAS  Google Scholar 

  • van Erp H, Bates PD, Burgal J, Shockey J, Browse J (2011) Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol 155:683–693

    Article  Google Scholar 

  • Weig A, Komor E (1992) The lipid transfer protein C of R. communis L. Isolation of two cDNA sequences which are strongly and exclusively expressed in cotyledons after germination. Planta 187:367–371

    Article  CAS  Google Scholar 

  • Weiss EA (1983) Castor. In: Weiss EA (ed) Oilseed crops. Longman, London, pp 31–99

    Google Scholar 

  • Xian-jie M, Rong-hua X, Aizhong L, Ding W, Bo T (2011) Cloning and characterization of glycerol-3-phosphate dehydrogenase gene (RcGPDH) from castor bean. Chin J Oil Crop Sci 33:451–458

    Google Scholar 

  • Zalavadiya VK, Mehta DR, Javia RM, Padhiyar SM, Madariya RB (2014) Somatic organogenesis and plant regeneration in castor (Ricinus communis L.). Asian J Bio Sci 9:43–52

    Google Scholar 

  • Zhang J, Wang X, Feng Z, Geng X, Mu S et al (2016) In vitro establishment of a highly effective method of castor bean (Ricinus communis L.) regeneration using shoot explants. J Integr Agri 15:1417–1422

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulpuri Sujatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sujatha, M., Tarakeswari, M. (2018). Biotechnological Means for Genetic Improvement in Castor Bean as a Crop of the Future. In: Kole, C., Rabinowicz, P. (eds) The Castor Bean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97280-0_14

Download citation

Publish with us

Policies and ethics