Skip to main content

Statistical Characteristics of a Flow of Substance in a Channel of Network that Contains Three Arms

  • Chapter
  • First Online:
Advanced Computing in Industrial Mathematics (BGSIAM 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 793))

Included in the following conference series:

Abstract

We study the motion of a substance in a channel that is part of a network. The channel has 3 arms and consists of nodes of the network and edges that connect the nodes and form ways for motion of the substance. Stationary regime of the flow of the substance in the channel is discussed and statistical distributions for the amount of substance in the nodes of the channel are obtained. These distributions for each of the three arms of the channel contain as particular case famous long-tail distributions such as Waring distribution, Yule-Simon distribution and Zipf distribution. The obtained results are discussed from the point of view of technological applications of the model (e.g., the motion of the substance is considered to happen in a complex technological system and the obtained analytical relationships for the distribution of the substance in the nodes of the channel represents the distribution of the substance in the corresponding cells of the technological chains). A possible application of the obtained results for description of human migration in migration channels is discussed too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  2. Amaral, L.A.N., Ottino, J.M.: Complex networks. Augmenting and framework for the study of complex systems. Eur. Phys. J. B 38, 147–162 (2004)

    Article  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  4. Borjas, G.J.: Economic theory and international migration. Int. Migration Rev. 23, 457–485 (1989)

    Article  Google Scholar 

  5. Bracken, I., Bates, J.J.: Analysis of gross migration profiles in England and Wales: some developments in classification. Env. Plann. A 15, 343–355 (1983)

    Article  Google Scholar 

  6. Champion A.G., Bramley G., Fotheringham A.S., Macgill J., Rees P.H.: A migration modelling system to support government decision-making. In: Stillwell, J., Geertman, S. (eds.) Planning support systems in practice, pp. 257–278. Springer Verlag, Berlin (2002)

    Google Scholar 

  7. Chan, W.-K.: Theory of nets: flows in networks. Wiley, New York (1990)

    Google Scholar 

  8. Chen, W.-C.: On the weak form of the Zipf’s law. J. Appl. Probab. 17, 611–622 (1980)

    Article  MathSciNet  Google Scholar 

  9. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079–1187 (2002)

    Article  Google Scholar 

  10. Fawcet, J.T.: Networks, linkages, and migration systems. Int. Migration Rev. 23(1989), 671–680 (1989)

    Article  Google Scholar 

  11. Ford Jr., L.D., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton, NJ (1962)

    MATH  Google Scholar 

  12. Gartner, N.H., Importa, G. (eds.): Urban Traffic Networks. Dynamic Flow Modeling and Control. Springer, Berlin (1995)

    Google Scholar 

  13. Gurak D.T., Caces F.: Migration networks and the shaping of migration systems. In: Kitz M.M., Lim L.L., Zlotnik H. (eds.) International Migration Systems: A Global Approach, pp. 150-176. Clarendon Press, Oxford (1992)

    Google Scholar 

  14. Harris, J.R., Todaro, M.P.: Migration, unemployment and development: a two-sector analysis. Am Econ. Rev. 60, 126–142 (1970)

    Google Scholar 

  15. Hotelling, H.: A mathematical theory of migration. Env. Plann. 10, 1223–1239 (1978)

    Article  Google Scholar 

  16. Irwin, J.O.: The place of mathematics in medical and biological sciences. J. R. Stat. Soc. 126, 1–44 (1963)

    Google Scholar 

  17. Irwin, J.O.: The generalized waring distribution applied to accident theory. J. R. Stat. Soc. 131, 205–225 (1968)

    MathSciNet  Google Scholar 

  18. Lee, E.S.: A theory of migration. Demography 3, 47–57 (1966)

    Article  Google Scholar 

  19. Lu, J., Yu, X., Chen, G., Yu, W. (eds.) Complex Systems and Networks. Dynamics, Controls and Applications. Springer, Berlin (2016)

    Google Scholar 

  20. Marsan, G.A., Bellomo, N., Tosin, A.: Complex Systems and Society: Modeling and Simulation. Springer, New York (2013)

    MATH  Google Scholar 

  21. Massey, D.S., Arango, J., Hugo, G., Kouaougi, A., Pellegrino, A., Edward, Taylor J.: Theories of international migration: a review and appraisal. Populat. Dev. Rev. 19, 431–466 (1993)

    Article  Google Scholar 

  22. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E. 63, 066117 (2001)

    Article  Google Scholar 

  23. Petrov, V., Nikolova, E., Wolkenhauer, O.: Reduction of nonlinear dynamic systems with an application to signal transduction pathways. IET Syst. Biol. 1, 2–9 (2007)

    Article  Google Scholar 

  24. Puu, T.: Hotelling’s migration model revisited. Env. Plann. 23, 1209–1216 (1991)

    Article  Google Scholar 

  25. Schubert, A., Glänzel, W.: A dynamic look at a class of skew distributions. A model with scientometric application. Scientometrics 6, 149–167 (1984)

    Article  Google Scholar 

  26. Simon, J.H.: The Economic Consequences of Migration. The University of Michnigan Press, Ann Arbor, MI (1999)

    Book  Google Scholar 

  27. Simon, H.A.: On a class of skew distribution functions. Biometrica 42, 425–440 (1955)

    Article  MathSciNet  Google Scholar 

  28. Skeldon, R.: Migration and Development: A Global Perspective. Routledge, London (1992)

    Google Scholar 

  29. Vitanov, N.K.: Science Dynamics and Research Production: Indicators, Indexes, Statistical Laws and Mathematical Models. Springer, Cham (2016)

    Book  Google Scholar 

  30. Vitanov, N.K., Jordanov, I.P., Dimitrova, Z.I.: On nonlinear dynamics of interacting populations: coupled kink waves in a system of two populations. Commun. Nonlinear Sci. Numer. Simul. 14, 2379–2388 (2009)

    Article  MathSciNet  Google Scholar 

  31. Vitanov, N.K., Jordanov, I.P., Dimitrova, Z.I.: On nonlinear population waves. Appl. Mathe. Comput. 215, 2950–2964 (2009)

    Article  MathSciNet  Google Scholar 

  32. Vitanov, N.K., Dimitrova, Z.I., Ausloos, M.: Verhulst-Lotka-Volterra model of ideological struggle. Phys. A. 389, 4970–4980 (2010)

    Article  Google Scholar 

  33. Vitanov N.K., Ausloos M., Rotundo G.: Discrete model of ideological struggle accounting for migration. Adv. Complex Syst. 15, Supplement 1, Article number 1250049 (2012)

    Article  MathSciNet  Google Scholar 

  34. Vitanov, N.K., Ausloos, M.: Knowledge epidemics and population dynamics models for describing idea diffusion. In: Scharnhorst, A., Börner, K., van den Besselaar, P. (eds.) Knowledge Epidemics and Population Dynamics Models for Describing Idea Diffusion, pp. 69–125. Springer, Berlin (2012)

    Google Scholar 

  35. Vitanov, N.K., Dimitrova, Z.I., Vitanov, K.N.: Traveling waves and statistical distributions connected to systems of interacting populations. Comput. Mathe. Appl. 66, 1666–1684 (2013)

    Article  MathSciNet  Google Scholar 

  36. Vitanov, N.K., Vitanov, K.N.: Population dynamics in presence of state dependent fluctuations. Comput. Mathe. Appl. 68, 962–971 (2013)

    Article  MathSciNet  Google Scholar 

  37. Vitanov, N.K., Ausloos, M.: Test of two hypotheses explaining the size of populations in a system of cities. J. Appl. Statist. 42, 2686–2693 (2015)

    Article  MathSciNet  Google Scholar 

  38. Vitanov, N.K., Vitanov, K.N.: Box model of migration channels. Mathe. Soc. Sci. 80, 108–114 (2016)

    Article  MathSciNet  Google Scholar 

  39. Vitanov, N.K., Vitanov, K.N., Ivanova, T.: Box model of migration in channels of migration networks. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) Advanced Computing in Industrial Mathematics. Studies in Computational Intelligence, vol. 728, pp. 203–215. Springer, Cham (2018)

    Google Scholar 

  40. Vitanov, N.K., Vitanov, K.N.: On the motion of substance in a channel of network and human migration. Phys. A 490, 1277–1290 (2018)

    Article  MathSciNet  Google Scholar 

  41. Weidlich, W., Haag, G. (eds.): Interregional Migration. Dynamic Theory and Comparative Analysis. Springer, Berlin (1988)

    Google Scholar 

  42. Willekens, F.J.: Probability models of migration: complete and incomplete data. SA J. Demography 7, 31–43 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay K. Vitanov .

Editor information

Editors and Affiliations

Proof that Eq. (10) is a solution of Eq. (7) for main arm of the channel

Proof that Eq. (10) is a solution of Eq. (7) for main arm of the channel

Let us consider the first equation from Eq. (7) for main arm. In this case \(i=0\) and Eq. (10) becomes \(x_0^A=x_0^{*A}+b_{00}^A\exp [-(\alpha _0^A+~\gamma _0^A)t]\). The substitution of the last relationship in the first of the Eq. (7) leads to the relationship

$$\begin{aligned} 0=(\sigma _0-\alpha _0^A-\gamma _0^{*A})x_0^* +b_{00}^A\sigma _0\exp [-(\alpha _0^A+\gamma _0^{*A})t]. \end{aligned}$$
(23)

Let us assume \(\sigma _0=\alpha _0^A+\gamma _0^{*A}\) and \(b_{00}^A=0\). Then Eq. (10) describes the solution of the first of Eq. (7).

Let us now consider Eq. (7) for the main arm of the channel for \(i=1,2,\dots \). Let us fix i and substitute the first of Eq. (10) in the corresponding equation from Eq. (7). The result is

$$\begin{aligned} \sum \limits _{j=0}^{i-1} \exp [-(\alpha _j^A+j\beta _j^A+\gamma _j^{*A})t]\big \{-b_{ij}^A(\alpha _j^A+j\beta _j^A+\gamma _j^{*A})-\\\nonumber -b_{i-1,j}^A[\alpha _{i-1}^A+(i-1)\beta _{i-1}^A]+b_{ij}^A(\alpha _i^A+i\beta _i^A+\gamma _i^{*A})\big \}=0 \end{aligned}$$
(24)

As it can be seen from Eqs. (12), (24) is satisfied.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vitanov, N.K., Borisov, R. (2019). Statistical Characteristics of a Flow of Substance in a Channel of Network that Contains Three Arms. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-97277-0_34

Download citation

Publish with us

Policies and ethics