Skip to main content

Simulated Annealing Method for Metal Nanoparticle Structures Optimization

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 793))

Abstract

The goal of this paper is to develop an efficient method to search for metal and bimetal nanoparticle structures with the lowest possible potential energy. This is a global optimization problem. In computational complexity theory, global optimization problems are NP-hard, meaning that they cannot be solved in polynomial time. Because of the severe difficulty of finding the global minimum, the simulated annealing algorithm was selected as main strategy. At the first step we use the lattice Monte Carlo method with different lattices. Then we relax the resulting nanoparticle structures at low temperature within molecular dynamics, choosing one of them as approximation of the global minimum. The numerical solution of an optimal cluster structure of Ag (200) shows the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cai, W.S., Shao, X.G.: A fast annealing evolutionary algorithm for global optimization. J. Comput. Chem. 23(4), 427–435 (2002)

    Article  Google Scholar 

  2. Cai, W.S., Feng, Y., Shao, X.G., Pan, Z.X.: Optimization of Lennard-Jones atomic clusters. J. Mol. Struct. (Theochem) 579(1), 229–234 (2002)

    Article  Google Scholar 

  3. Cheng, L.J., Cai, W.S., Shao, X.G.: A connectivity table for cluster similarity checking in the evolutionary optimization method. Chem. Phys. Lett. 389(4), 309–314 (2004)

    Article  Google Scholar 

  4. Cleri, F., Rosato, V.: Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22–33 (1993)

    Article  Google Scholar 

  5. Doye, J.P.K.: Physical perspectives on the global optimization of atomic clusters. In: Pintér, J.D. (eds) Global Optimization. Nonconvex Optimization and Its Applications, vol. 85, pp. 103–139. Springer, Boston, MA (2006)

    Google Scholar 

  6. Gelfand, S.B., Mitter, S.K.: Metropolis-type annealing algorithms for global optimization in {R}^d. SIAM J. Control Optim. 31(1), 111–131 (1993)

    Article  MathSciNet  Google Scholar 

  7. Goedecker, S.: Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120(21), 9911–9917 (2004)

    Article  Google Scholar 

  8. Gregurick, S.K., Alexander, M.H., Hartke, B.: Global geometry optimization of (Ar)n and B(Ar)n clusters using a modified genetic algorithm. J. Chem. Phys. 104(7), 2684–2691 (1996)

    Article  Google Scholar 

  9. Guevara, J., Llois, A.M., Weissmann, M.: Model potential based on tight-binding total-energy calculations for transition-metal systems. Phys. Rev. B: Condens. Matter. 52(15), 11509–11516 (1995)

    Article  Google Scholar 

  10. Gupta, R.P.: Lattice relaxation at a metal surface. Phys. Rev. B: Condens. Matter. 23(12), 6265–6270 (1981)

    Article  Google Scholar 

  11. Hartke, B.: Global cluster geometry optimization by a phenotype algorithm with Niches: Location of elusive minima, and low-order scaling with cluster size. J. Comput. Chem. 20(16), 1752–1759 (1999)

    Article  Google Scholar 

  12. Huang, Wenqi, Lai, Xiangjing, Ruchu, Xu: Structural optimization of silver clusters from Ag141 to Ag310 using a modified dynamic lattice searching method with constructed core. Chem. Phys. Lett. 507(1), 199–202 (2011)

    Article  Google Scholar 

  13. Husic, B.E., Schebarchov, D., Wales, D.J.: Impurity effects on solid–solid transitions in atomic clusters. NANO 8, 18326–18340 (2016)

    Google Scholar 

  14. Jellinek, J., Krissinel, E.B.: NinAlm alloy clusters: analysis of structural forms and their energy ordering. Chem. Phys. Lett. 258(1–2), 283–292 (1996)

    Article  Google Scholar 

  15. Jiang, H.Y., Cai, W.S., Shao, X.G.: A random tunneling algorithm for the structural optimization problem. Phys. Chem. Chem. Phys. 4(19), 4782–4788 (2002)

    Article  Google Scholar 

  16. Leary, R.H.: Global Optimization on Funneling Landscapes. J. Global Optim. 18(4), 367–383 (2000)

    Google Scholar 

  17. Leary, R.H., Doye, J.P.K.: Tetrahedral global minimum for the 98-atom Lennard-Jones cluster. Phys. Rev. E 60(6), R6320–R6322 (1999)

    Article  Google Scholar 

  18. Li, X.J., Fu, J., Qin, Y., Hao, S.Z., Zhao, J.J.: Gupta potentials for five HCP rare earth metals. Comput. Mater. Sci. 112, 75–79 (2016)

    Article  Google Scholar 

  19. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Prog. B 45(1), 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  20. Lloyd, L.D., Johnston, R.L., Salhi, S., Wilson, N.T.: Theoretical investigation of isomer stability in platinum-palladium nanoalloy clusters. J. Mater. Chem. 14(11), 1691–1704 (2004)

    Article  Google Scholar 

  21. Ma, J.P., Straub, J.E.J.: Simulated annealing using the classical density distribution. Chem. Phys. 101(1), 533–541 (1994)

    Article  Google Scholar 

  22. Michaelian, K., Rendón, N., Garzón, I.L.: Structure and energetics of Ni, Ag, and Au nanoclusters. Phys. Rev. B 60, 2000–2010 (1999)

    Article  Google Scholar 

  23. Myshlavtsev, A.V., Stishenko, P.V.: Modification of the metropolis algorithm for modeling metallic nanoparticles. Omsk scientific newspaper No 1(107) 21–25 (in Russian) (2012)

    Google Scholar 

  24. Myshlyavtsev, A.V., Stishenko, P.V., Svalova, A.I.: A systematic computational study of the structure crossover and coordination number distribution of metallic nanoparticles. Phys. Chem. Chem. Phys. 19(27), 17895–17903 (2017)

    Article  Google Scholar 

  25. Paszkowicz, W.: Genetic algorithms, a nature-inspired tool: a survey of applications in materials science and related fields: part II. Mater. Manuf. Process. 28, 708–725 (2013). https://doi.org/10.1080/10426914.2012.746707

    Article  Google Scholar 

  26. Pillardy, J., Liwo, A., Scheraga, H.A.: An efficient deformation-based global optimization method (Self-Consistent Basin-to-Deformed-Basin Mapping (SCBDBM)). Application to Lennard-Jones Atomic Clusters. J. Phys. Chem. A 103(46), 9370–9377 (1999)

    Article  Google Scholar 

  27. Romero, D., Barrón, C., Gómez, S.: The optimal geometry of Lennard-Jones clusters: 148–309. Comput. Phys. Commun. 123(1999), 87–96 (1999)

    Article  Google Scholar 

  28. Rossi, G., Ferrando, R.: Combining shape-changing with exchange moves in the optimization of nanoalloys. Comput. Theor. Chem. (in press) (2017)

    Google Scholar 

  29. Schelstraete, S., Verschelde, H.J.: Finding minimum-energy configurations of Lennard-Jones clusters using an effective potential. Phys. Chem. A 101(3), 310–315 (1997)

    Article  Google Scholar 

  30. Sebetci, A., Güvenç, Z.B.: Global minima for free Pt_N clusters (N = 22–56): a comparison between the searches with a molecular dynamics approach and a basin-hopping algorithm. Eur. Phys. J. D 30(1), 71–79 (2004)

    Article  Google Scholar 

  31. Shao, X.G., Cheng, L.J., Cai, W.S.: A dynamic lattice searching method for fast optimization of Lennard-Jones clusters. J. Comput. Chem. 25(14), 1693–1698 (2004)

    Article  Google Scholar 

  32. Shao, X.G., Jiang, H.Y., Cai, W.S.: Parallel random tunneling algorithm for structural optimization of Lennard-Jones clusters up to N = 330. J. Chem. Inf. Comput. Sci. 44(1), 193–199 (2004)

    Article  Google Scholar 

  33. Takeuchi, H.: Clever and efficient method for searching optimal geometries of Lennard-Jones clusters. J. Chem. Inf. Model. 46(5), 2066–2070 (2006)

    Article  Google Scholar 

  34. Wales, D.J.: Global optimization of clusters, crystals, and biomolecules. Science 1999, Science 285(5432), 1368–1372 (1999)

    Article  Google Scholar 

  35. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms: condensed matter; atomic and molecular clusters. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  36. Wales, D.J., Scheraga, H.A.: Global optimization of clusters, crystals, and biomolecules. Science 1999, Science 285(5432), 1368–1372 (1999)

    Article  Google Scholar 

  37. White, R.P., Mayne, H.R.: An investigation of two approaches to basin hopping minimization for atomic and molecular clusters. Chem. Phys. Lett. 287(5–6), 463–468 (1998)

    Article  Google Scholar 

  38. Wilson, N.T., Johnson, R.L.: A theoretical study of atom ordering in copper–gold nanoalloy clusters. J. Mater. Chem. 12(10), 2913–2922 (2002)

    Article  Google Scholar 

  39. Wolf, M.D., Landman, U.: Genetic algorithms for structural cluster optimization. J. Phys. Chem. A 102(30), 6129–6137 (1998)

    Article  Google Scholar 

  40. Xia, W., Sun, Y.: Stable structures and potential energy surface of the metallic clusters: Ni, Cu, Ag, Au, Pd, and Pt. J. Nanopart. Res. 19, 201 (2017). https://doi.org/10.1007/s11051-017-3907-6

    Article  Google Scholar 

  41. Xue, G.L.: Improvement on the northby algorithm for molecular conformation: Better solutions. J. Global Optim. 4(4), 425–440 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research presented here is partially supported by the Russian Foundation for Basic Research (project No. 17-53-04010 and project No. 18-38-00571) and the Bulgarian National Scientific Fund under the grant DFNI-DN 12/5 “Efficient Stochastic Methods and Algorithms for Large Scale Problems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Myasnichenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Myasnichenko, V., Kirilov, L., Mikhov, R., Fidanova, S., Sdobnyakov, N. (2019). Simulated Annealing Method for Metal Nanoparticle Structures Optimization. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-97277-0_23

Download citation

Publish with us

Policies and ethics