Advertisement

Antimuscarinic Pharmacotherapy for Overactive Bladder

Chapter
  • 395 Downloads

Abstract

Antimuscarinic agents act by competitively blocking muscarinic receptors in the bladder urothelium and detrusor muscle. These receptors are stimulated by acetylcholine, which is released from cholinergic parasympathetic nerves. Antimuscarinic agents work during the storage phase of the micturition cycle to reduce involuntary bladder contractions and the sensation of urgency. A variety of antimuscarinics are available for use in the treatment of overactive bladder and vary in their pharmacologic properties such as lipophilicity, molecular charge, and molecular size. These property differences result in some theoretical, as well as real, therapeutic advantages and differences in rates of the various adverse effects. Several antimuscarinic agents are in common use including darifenacin, fesoterodine, hyoscyamine, imidafenacin, propantheline bromide, scopolamine, solifenacin, tolterodine, trospium, flavoxate, and oxybutynin. Important clinical data on these drugs is summarized in this chapter.

Keywords

Overactive bladder Antimuscarinics Urgency Incontinence Anticholinergics Oxybutynin Lower urinary tract symptoms 

Abbreviations

5-HMT

5-Hydroxymethyl tolterodine

ACET

Antimuscarinic clinical effectiveness trial

Ach

Acetylcholine

CIC

Clean intermittent catheterization

CNS

Central nervous system

CYP

Cytochrome

DEO

N-desethyl-oxybutynin

DO

Detrusor overactivity

ER

Extended release

HRQoL

Health-related quality of life

IMPACT

Improvement in patients: assessing symptomatic control with tolterodine extended-release study

IR

Immediate release

LUT

Lower urinary tract

M

Muscarinic receptor

OAB

Overactive bladder

OPERA

Overactive bladder: performance of extended-release agents trial

OXY

Oxybutynin

OXY-TDS

Oxybutynin transdermal delivery system

PDE

Phosphodiesterase

PVRs

Post-void residuals

QTc

Corrected QT interval

RCT

Randomized controlled trial

SCI

Spinal cord injury

STAR

Solifenacin and tolterodine as an active comparator in a randomized trial

TDS

Transdermal delivery system

TOLT

Tolterodine

UUI

Urgency urinary incontinence

References

  1. 1.
    Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U; Standardisation Sub-committee of the International Continence Society, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn. 2002;21(2):167–78.Google Scholar
  2. 2.
    Andersson K-E, Cardozo L, Cruz F, Lee K-S, Sahai A, Wein AJ. Pharmacological treatment of urinary incontinence. In: Abrams P, Cardozo L, Wagg A, Wein AJ, editors. Incontinence. 6th ed. Bristol: ICI-ICS. International Continence Society; 2017. pp. 805–958.Google Scholar
  3. 3.
    Andersson KE. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev. 1993;45(3):253–308.Google Scholar
  4. 4.
    Abrams P, Andersson KE. Muscarinic receptor antagonists for overactive bladder. BJU Int. 2007;100(5):987–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wein AJ, Levin RM, Barrett DM. Voiding function: relevant anatomy, physiology, and pharmacology. In: Duckett JW, Howards ST, Grayhack JT, Gillenwater JY, editors. Adult and pediatric urology. St. Louis: Mosby; 1991. p. 933–99.Google Scholar
  6. 6.
    Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev. 2004;56(4):581–631.PubMedCrossRefGoogle Scholar
  7. 7.
    Jensen D Jr. Pharmacological studies of the uninhibited neurogenic bladder. II. The influence of cholinergic excitatory and inhibitory drugs on the cystometrogram of neurological patients with normal and uninhibited neurogenic bladder. Acta Neurol Scand. 1981;64(3):175–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Andersson KE, Yoshida M. Antimuscarinics and the overactive detrusor-which is the main mechanism of action? Eur Urol. 2003;43(1):1–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Chess-Williams R. Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. Auton Autacoid Pharmacol. 2002;22(3):133–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Yoshida M, Miyamae K, Iwashita H, Otani M, Inadome A. Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during aging. Urology. 2004;63(3 Suppl 1):17–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Andersson KE, Wein AJ. Pharmacologic management of storage and emptying failure. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell-Walsh Urology. 9th ed. Philadelphia: Saunders; 2007. p. 2091–123.Google Scholar
  12. 12.
    Guay DR. Clinical pharmacokinetics of drugs used to treat urge incontinence. Clin Pharmacokinet. 2003;42(14):1243–85.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chapple CR, Khullar V, Gabriel Z, Muston D, Bitoun CE, Weinstein D. The effects of antimuscarinic treatments in overactive bladder: an update of a systematic review and meta-analysis. Eur Urol. 2008;54(3):543–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Witte LP, Mulder WM, de la Rosette JJ, Michel MC. Muscarinic receptor antagonists for overactive bladder treatment: does one fit all? Curr Opin Urol. 2009;19(1):13–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Food and Drug Administration (FDA). Detrol tolterodine tartrate tablets. 2012. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020771s028lbl.pdf. LAB-0329-6.1. Reference ID: 3168088. Revised Aug 2012. Accessed 7 Mar 2018.
  16. 16.
    Food and Drug Administration (FDA). VESIcare (solifenacin succinate) tablets. 2008. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021518s007lbl.pdf. 01232008VES. Revised Nov 2008. Accessed 7 Mar 2018.
  17. 17.
    Food and Drug Administration (FDA). Enablex (darifenacin) extended-release tablets. 2008. http://www.fda.gov/cder/foi/label/2008/021513s004lbl.pdf https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021513s005lbl.pdf. T2008-40. Revised April 2008. Accessed 7 Mar 2018.
  18. 18.
    European Medicines Agency (EMEA). Toviaz (fesoterodine). EPAR summary for the public. 2012. EMA/84670/2012. www.ema.europa.eu/docs/en_GB/document_library/.../WC500040179.pdf. Accessed 8 Mar 2018.
  19. 19.
    Andersson KE. Antimuscarinics for treatment of overactive bladder. Lancet Neurol. 2004;3(1):46–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Fader M, Glickman S, Haggar V, Barton R, Brooks R, Malone-Lee J. Intravesical atropine compared to oral oxybutynin for neurogenic detrusor overactivity: a double-blind, randomized crossover trial. J Urol. 2007;177(1):208–13.CrossRefGoogle Scholar
  21. 21.
    Andersson KE. Potential benefits of muscarinic M3 receptor selectivity. Eur Urol. 2002;1(4):23.CrossRefGoogle Scholar
  22. 22.
    Haab F, Stewart L, Dwyer P. Darifenacin, an M3 selective receptor antagonist, is an effective and well tolerated once daily treatment for overactive bladder. Eur Urol. 2004;45(4):420–9; discussion 429.PubMedCrossRefGoogle Scholar
  23. 23.
    Chapple C, Steers W, Norton P, Millard R, Kralidis G, Glavind K, Abrams P. A pooled analysis of three phase III studies to investigate the efficacy, tolerability and safety of darifenacin, a muscarinic M3 selective receptor antagonist, in the treatment of overactive bladder. BJU Int. 2005;95(7):993–1001.PubMedCrossRefGoogle Scholar
  24. 24.
    Cardozo L, Dixon A. Increased warning time with darifenacin: a new concept in the management of urinary urgency. J Urol. 2005;173(4):1214–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Dwyer P, Kelleher C, Young J, Haab F, Lheritier K, Ariely R, Ebinger U. Long-term benefits of darifenacin treatment for patient quality of life: results from a 2-year extension study. Neurourol Urodyn. 2008;27(6):540–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Lipton RB, Kolodner K, Wesnes K. Assessment of cognitive function of the elderly population: effects of darifenacin. J Urol. 2005;173(2):493–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Chancellor MB, Staskin DR, Kay GG, Sandage BW, Oefelein MG, Tsao JW. Blood-brain barrier permeation and efflux exclusion of anticholinergics used in the treatment of overactive bladder. Drugs Aging. 2012;29(4):259–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Serra DB, Affrime MB, Bedigian MP, Greig G, Milosavljev S, Skerjanec A, Wang Y. QT and QTc interval with standard and supratherapeutic doses of darifenacin, a muscarinic M3 selective receptor antagonist for the treatment of overactive bladder. J Clin Pharmacol. 2005;45(9):1038–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Olshansky B, Ebinger U, Brum J, Egermark M, Viegas A, Rekeda L. Differential pharmacological effects of antimuscarinic drugs on heart rate: a randomized, placebo-controlled, double-blind, crossover study with tolterodine and darifenacin in healthy participants > or = 50 years. J Cardiovasc Pharmacol Ther. 2008;13(4):241–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Ney P, Pandita RK, Newgreen DT, Breidenbach A, Stöhr T, Andersson KE. Pharmacological characterization of a novel investigational antimuscarinic drug, fesoterodine, in vitro and in vivo. BJU Int. 2008;101(8):1036–42.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chapple CR, Yamaguchi O, Ridder A, Liehne J, Carl S, Mattiasson A, et al. Clinical proof of concept study (blossom) shows novel beta 3 andrenoceptor agonist YM178 is effective and well tolerated in the treatment of symptoms of overactive bladder (abstract 674). Eur Urol Suppl. 2008;7(3):239.Google Scholar
  32. 32.
    Michel MC. Fesoterodine: a novel muscarinic receptor antagonist for the treatment of overactive bladder syndrome. Expert Opin Pharmacother. 2008;9(10):1787–96.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Malhotra B, Gandelman K, Sachse R, Wood N, Michel MC. The design and development of fesoterodine as a prodrug of 5-hydroxymethyl tolterodine (5-HMT), the active metabolite of tolterodine. Curr Med Chem. 2009;16(33):4481–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    de Mey C, Mateva L, Krastev Z, Sachse R, Wood N, Malhotra B. Effects of hepatic dysfunction on the single-dose pharmacokinetics of fesoterodine. J Clin Pharmacol. 2011;51(3):397–405.PubMedCrossRefGoogle Scholar
  35. 35.
    Khullar V, Rovner ES, Dmochowski R, Nitti V, Wang J, Guan Z. Fesoterodine dose response in subjects with overactive bladder syndrome. Urology. 2008;71(5):839–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Kelleher CJ, Tubaro A, Wang JT, Kopp Z. Impact of fesoterodine on quality of life: pooled data from two randomized trials. BJU Int. 2008;102(1):56–61.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Herschorn S, Swift S, Guan Z, Carlsson M, Morrow JD, Brodsky M, Gong J. Comparison of fesoterodine and tolterodine extended release for the treatment of overactive bladder: a head-to-head placebo-controlled trial. BJU Int. 2010;105(1):58–66.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kaplan SA, Schneider T, Foote JE, Guan Z, Carlsson M, Gong J. Superior efficacy of fesoterodine over tolterodine extended release with rapid onset: a prospective, head-to-head, placebo-controlled trial. BJU Int. 2011;107(9):1432–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Malhotra B, Wood N, Sachse R, Gandelman K. Thorough QT study of the effect of fesoterodine on cardiac repolarization. Int J Clin Pharmacol Ther. 2010;48(5):309–18.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Sand PK, Heesakkers J, Kraus SR, Carlsson M, Guan Z, Berriman S. Long-term safety, tolerability and efficacy of fesoterodine in subjects with overactive bladder symptoms stratified by age: pooled analysis of two open-label extension studies. Drugs Aging. 2012;29(1):119–31.CrossRefGoogle Scholar
  41. 41.
    Kelleher CJ, Dmochowski RR, Berriman S, Kopp ZS, Carlsson M. Sustained improvement in patient-reported outcomes during long-term fesoterodine treatment for overactive bladder symptoms: pooled analysis of two open-label extension studies. BJU Int. 2012;110(3):392–400.PubMedCrossRefGoogle Scholar
  42. 42.
    Wagg A, Khullar V, Marschall-Kehrel D, Michel MC, Oelke M, Darekar A, Bitoun CE, Weinstein D, Osterloh I. Flexible-dose fesoterodine in elderly adults with overactive bladder: results of the randomized, double-blind, placebo-controlled study of fesoterodine in an aging population trial. J Am Geriatr Soc. 2013;61(2):185–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Muskat Y, Bukovsky I, Schneider D, Langer R. The use of scopolamine in the treatment of detrusor instability. J Urol. 1996;156:1989–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Kobayashi F, Yageta Y, Yamazaki T, Wakabayashi E, Inoue M, Segawa M, Matsuzawa S. Pharmacological effects of imidafenacin (KRP-197/ONO-8025), a new bladder selective anti-cholinergic agent, in rats. Comparison of effects on urinary bladder capacity and contraction, salivary secretion and performance in the Morris water maze task. Arzneimittelforschung. 2007;57(3):147–54.PubMedGoogle Scholar
  45. 45.
    Yamada S, Seki M, Ogoda M, Fukata A, Nakamura M, Ito Y. Selective binding of bladder muscarinic receptors in relation to the pharmacokinetics of a novel antimuscarinic agent, imidafenacin, to treat overactive bladder. J Pharmacol Exp Ther. 2011;336(2):365–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Kanayama N, Kanari C, Masuda Y, Ohmori S, Ooie T. Drug-drug interactions in the metabolism of imidafenacin: role of the human cytochrome P450 enzymes and UDP-glucuronic acid transferases, and potential of imidafenacin to inhibit human cytochrome P450 enzymes. Xenobiotica. 2007;37(2):139–54.PubMedCrossRefGoogle Scholar
  47. 47.
    Homma Y, Yamaguchi T, Yamaguchi O. A randomized, double-blind, placebo-controlled phase II dose-finding study of the novel anti-muscarinic agent imidafenacin in Japanese patients with overactive bladder. Int J Urol. 2008;15(9):809–15.PubMedCrossRefGoogle Scholar
  48. 48.
    Homma Y, Yamaguchi O. A randomized, double-blind, placebo- and propiverine-controlled trial of the novel antimuscarinic agent imidafenacin in Japanese patients with overactive bladder. Int J Urol. 2009;16(5):499–506.PubMedCrossRefGoogle Scholar
  49. 49.
    Homma Y, Yamaguchi O. Long-term safety, tolerability, and efficacy of the novel anti-muscarinic agent imidafenacin in Japanese patients with overactive bladder. Int J Urol. 2008;15(11):986–91.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kadekawa K, Onaga T, Shimabukuro S, Shimabukuro H, Sakumoto M, Ashitomi K, et al. Effect of imidafenacin before sleeping on nocturia. LUTS. 2012;4(3):130–5.PubMedGoogle Scholar
  51. 51.
    Wada N, Watanabe M, Kita M, Matsumoto S, Osanai H, Yamaguchi S, et al. Effect of imidafenacin on nocturia and sleep disorder in patients with overactive bladder. Urol Int. 2012;89(2):215–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Yokoyama O, Homma Y, Yamaguchi O. Imidafenacin, an antimuscarinic agent, improves nocturia and reduces nocturnal urine volume. Urology. 2013;82(3):515–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee KS, Park B, Kim JH, Kim HG, Seo JT, Lee JG, Jang Y, Choo MS. A randomised, double-blind, parallel design, multi-institutional, non-inferiority phase IV trial of imidafenacin versus fesoterodine for overactive bladder. Int J Clin Pract. 2013;67(12):1317–26.PubMedCrossRefGoogle Scholar
  54. 54.
    Beermann B, Hellstrom K, Rosen A. On the metabolism of propantheline in man. Clin Pharmacol Ther. 1972;13:212–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Blaivas JG, Labib KB, Michalik J, Zayed AA. Cystometric response to propantheline in detrusor hyperreflexia: therapeutic implications. J Urol. 1980;124:259–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Thüroff JW, Bunke B, Ebner A, Faber P, de Geeter P, Hannappel J, et al. Randomized, double-blind, multicenter trial on treatment of frequency, urgency and incontinence related to detrusor hyperactivity: oxybutynin versus propantheline versus placebo. J Urol. 1991;16(Suppl 1):48–61.Google Scholar
  57. 57.
    Holmes DMMF, Stanton SL. Oxybutynin versus propantheline in the management of detrusor instability. A patient-regulated variable dose trial. Br J Obstet Gynaecol. 1989;96:607–12.PubMedCrossRefGoogle Scholar
  58. 58.
    Wiener LB, Baum NH, Suarez GM. New method for management of detrusor instability: transdermal scopolamine. Urology. 1986;28:208–10.PubMedCrossRefGoogle Scholar
  59. 59.
    Ikeda K, Kobayashi S, Suzuki M, Miyata K, Takeuchi M, Yamada T, Honda K. M(3) receptor antagonism by the novel antimuscarinic agent solifenacin in the urinary bladder and salivary gland. Naunyn Schmiedeberg’s Arch Pharmacol. 2002;366(2):97–103.CrossRefGoogle Scholar
  60. 60.
    Tanaka Y, Masumori N, Tsukamoto T. Urodynamic effects of solifenacin in untreated female patients with symptomatic overactive bladder. Int J Urol. 2010;17(9):796–800.PubMedCrossRefGoogle Scholar
  61. 61.
    Lowenstein L, Kenton K, Mueller ER, Brubaker L, Sabo E, Durazo-Arivzu RA, Fitzgerald MP. Solifenacin objectively decreases urinary sensation in women with overactive bladder syndrome. Int Urol Nephrol. 2012;44(2):425–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Chapple CR, Araño P, Bosch JL, De Ridder D, Kramer AE, Ridder AM. Solifenacin appears effective and well tolerated in patients with symptomatic idiopathic detrusor overactivity in a placebo- and tolterodine-controlled phase 2 dose-finding study. BJU Int. 2004;93(1):71–7.CrossRefGoogle Scholar
  63. 63.
    Cardozo L, Lisec M, Millard R, van Vierssen TO, Kuzmin I, Drogendijk TE, et al. Randomized, double-blind placebo controlled trial of the once daily antimuscarinic agent solifenacin succinate in patients with overactive bladder. J Urol. 2004;172(5 Pt 1):1919–24.CrossRefGoogle Scholar
  64. 64.
    Chapple CR, Martinez-Garcia R, Selvaggi L, Toozs-Hobson P, Warnack W, Drogendijk T, et al. STAR study group. A comparison of the efficacy and tolerability of solifenacin succinate and extended release tolterodine at treating overactive bladder syndrome: results of the STAR trial. Eur Urol. 2005;48(3):464–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Luo D, Liu L, Han P, Wei Q, Shen H. Solifenacin for overactive bladder: a systematic review and meta-analysis. Int Urogynecol J. 2012;23(8):983–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Kelleher C, Cardozo L, Kobashi K, Lucente V, et al. Solifenacin: as effective in mixed urinary incontinence as in urge urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct. 2006;17(4):382.PubMedCrossRefGoogle Scholar
  67. 67.
    Wagg A, Wyndaele JJ, Siever P. Efficacy and tolerability of solifenacin in elderly subjects with overactive bladder syndrome: a pooled analysis. Am J Geriatr Pharmacother. 2006;4(1):14.PubMedCrossRefGoogle Scholar
  68. 68.
    van Rey F, Heesakkers J. Solifenacin in multiple sclerosis patients with overactive bladder: a prospective study. Adv Urol. 2011;2011:834753.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Garely AD, Kaufman JM, Sand PK, Smith N, Andoh M. Symptom bother and health-related quality of life outcomes following solifenacin treatment for overactive bladder: the VESIcare Open-Label Trial (VOLT). Clin Ther. 2006;28(11):1935–46.PubMedCrossRefGoogle Scholar
  70. 70.
    Bolduc S, Moore K, Nadeau G, Lebel S, Lamontagne P, Hamel M. Prospective open label study of solifenacin for overactive bladder in children. J Urol. 2010;184(4 Suppl):1668–73.CrossRefGoogle Scholar
  71. 71.
    Asajima H, Sekiguchi Y, Matsushima S, Saito N, Saito T. QT prolongation and torsade de pointes associated with solifenacin in an 81-year-old woman. Br J Clin Pharmacol. 2008;66(6):896–7.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Michel MC, Wetterauer U, Vogel M, de la Rosette JJ. Cardiovascular safety and overall tolerability of solifenacin in routine clinical use: a 12-week, open-label, post-marketing surveillance study. Drug Saf. 2008;31(6):505–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Amarenco G, Sutory M, Zachoval R, Agarwal M, Del Popolo G, Tretter R, et al. Solifenacin is effective and well tolerated in patients with neurogenic detrusor overactivity: results from the double-blind, randomized, active- and placebo-controlled SONIC urodynamic study. Neurourol Urodyn. 2017;36(2):313–21.CrossRefGoogle Scholar
  74. 74.
    Nadeau G, Schröder A, Moore K, Genois L, Lamontagne P, Hamel M, et al. Long-term use of solifenacin in pediatric patients with overactive bladder: extension of a prospective open-label study. Can Urol Assoc J. 2014;8(3–4):118–23.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Brynne N, Stahl MM, Hallén B, Edlund PO, Palmér L, Höglund P, Gabrielsson J. Pharmacokinetics and pharmacodynamics of tolterodine in man: a new drug for the treatment of urinary bladder overactivity. Int J Clin Pharmacol Ther. 1997;35(7):287–95.PubMedGoogle Scholar
  76. 76.
    Nilvebrant L, Sundquist S, Gillberg PG. Tolterodine is not subtype (m1-m5) selective but exhibits functional bladder selectivity in vivo (abstract). Abstracts from the 26th Annual Meeting of the International Continence Society. Neurourol Urodyn. 1996;15(4):310–1.Google Scholar
  77. 77.
    Nilvebrant L, Hallén B, Larsson G. Tolterodine—a new bladder selective muscarinic receptor antagonist: preclinical pharmacological and clinical data. Life Sci. 1997;60(13–14):1129–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Van Kerrebroeck P, Kreder K, Jonas U, Zinner N, Wein A; Tolterodine Study Group. Tolterodine once daily: superior efficacy and tolerability in the treatment of overactive bladder. Urology. 2001;57(3):414–21.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hills CJ, Winter SA, Balfour JA. Tolterodine Drugs. 1998;55(6):813–20; discussion 821–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Xie HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol. 2001;41:815–50.PubMedCrossRefGoogle Scholar
  81. 81.
    Diefenbach K, Jaeger K, Wollny A, Penzel T, Fietze I, Roots I. Effect of tolterodine on sleep structure modulated by CYP2D6 genotype. Sleep Med. 2008;9(5):579–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Appell RA, Sand P, Dmochowski R, Anderson R, Zinner N, Lama D; Overactive Bladder: Judging Effective Control and Treatment Study Group, et al. Prospective randomized controlled trial of extended release oxybutynin chloride and tolterodine tartrate in the treatment of overactive bladder: Results of the OBJECT study. Mayo Clin Proc. 2001;76(4):358–63.Google Scholar
  83. 83.
    Diokno AC, Appell RA, Sand PK, Dmochowski RR, Gburek BM, Klimberg IW, Kell SH; OPERA Study Group. Prospective, randomized, double-blind study of the efficacy and tolerability of the extended-release formulations of oxybutynin and tolterodine for overactive bladder: results of the OPERA trial. Mayo Clin Proc. 2003;78(6):687–695.Google Scholar
  84. 84.
    Sussman D, Garely A. Treatment of overactive bladder with once-daily extended-release tolterodine or oxybutynin: the antimuscarinic clinical effectiveness trial (ACET). Curr Med Res Opin. 2002;18(4):177–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Elinoff V, Bavendam T, Glasser DB, Carlsson M, Eyland N, Roberts R. Symptom-specific efficacy of tolterodine extended release in patients with overactive bladder: the IMPACT trial. Int J Clin Pract. 2006;60(6):745–51.PubMedCrossRefGoogle Scholar
  86. 86.
    Song C, Park JT, Heo KO, Lee KS, Choo MS. Effects of bladder training and/or tolterodine in female patients with overactive bladder syndrome: a prospective, randomized study. J Korean Med Sci. 2006;21(6):1060–3.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mattiasson A, Blaakaer J, Høye K, Wein AJ; Tolterodine Scandinavian Study Group. Simplified bladder training augments the effectiveness of tolterodine in patients with an overactive bladder. BJU Int. 2003;91(1):54–60.Google Scholar
  88. 88.
    Millard RJ; Asia Pacific Tolterodine Study Group. Clinical efficacy of tolterodine with or without a simplified pelvic floor exercise regimen. Neurourol Urodyn. 2004;23(1):48–53.Google Scholar
  89. 89.
    Hsiao SM, Chang TC, Wu WY, Chen CH, Yu HJ, Lin HH. Comparisons of urodynamic effects, therapeutic efficacy and safety of solifenacin versus tolterodine for female overactive bladder syndrome. J Obstet Gynaecol Res. 2011;37(8):1084–91.PubMedCrossRefGoogle Scholar
  90. 90.
    Dmochowski RR, Staskin DR, Duchin K, Paborji M, Tremblay TM. Clinical safety, tolerability and efficacy of combination tolterodine/pilocarpine in patients with overactive bladder. Int J Clin Pract. 2014;68(8):986–94.PubMedCrossRefGoogle Scholar
  91. 91.
    Todorova A, Vonderheid-Guth B, Dimpfel W. Effects of tolterodine, trospium chloride , and oxybutynin on the central nervous system. J Clin Pharmacol. 2001;41(6):636–44.PubMedCrossRefGoogle Scholar
  92. 92.
    Staskin D, Kay G, Tannenbaum C, Goldman HB, Bhashi K, Ling J, Oefelein MG. Trospium chloride is undetectable in the older human central nervous system. J Am Geriatr Soc. 2010;58(8):1618–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Kim Y, Yoshimura N, Masuda H, De Miguel F, Chancellor MB. Intravesical instillation of human urine after oral administration of trospium, tolterodine, and oxybutynin in a rat model of detrusor overactivity. BJU Int. 2006;97(2):400–3.PubMedCrossRefGoogle Scholar
  94. 94.
    Stöhrer M, Bauer P, Giannetti BM, Richter R, Burgdörfer H, Mürtz G. Effect of trospium chloride on urodynamic parameters in patients with detrusor hyperreflexia due to spinal cord injuries: a multicenter placebo-controlled double-blind trial. Urol Int. 1991;47(3):138–43.PubMedCrossRefGoogle Scholar
  95. 95.
    Madersbacher H, Stöhrer M, Richter R, Burgdörfer H, Hachen HJ, Mürtz G. Trospium chloride versus oxybutynin: a randomized double blind, multicenter trial in the treatment of detrusor hyperreflexia. Br J Urol. 1995;75(4):452–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Allousi S, Laval KU, Eckert R. Trospium chloride (Spasmo-lyt) in patients with motor urge syndrome (detrusor instability): a double-blind, randomised, multicentre, placebo-controlled study. J Clin Res. 1998;1:439–51.Google Scholar
  97. 97.
    Jünemann KP, Al-Shukri S. Efficacy and tolerability of trospium chloride and tolterodine in 234 patients with urge-syndrome: a double-blind, placebo-controlled multicenter clinical trial. Neurourol Urodyn. 2000;19:488–9.Google Scholar
  98. 98.
    Halaska M, Ralph G, Wiedemann A, Primus G, Ballering-Brühl B, Höfner K, Jonas U. Controlled, double-blind, multicenter clinical trial to investigate long-term tolerability and efficacy of trospium chloride in patients with detrusor instability. World J Urol. 2003;20(6):392–9.PubMedGoogle Scholar
  99. 99.
    Dmochowski RR, Sand PK, Zinner NR, Staskin DR. Trospium 60 mg once daily (QD) for overactive bladder syndrome: results from a placebo-controlled interventional study. Urology. 2008;71(3):449–54.CrossRefGoogle Scholar
  100. 100.
    Sand PK, Johnson Ii TM, Rovner ES, Ellsworth PI, Oefelein MG, Staskin DR. Trospium chloride once-daily extended release is efficacious and tolerated in elderly subjects (aged >/= 75 years) with overactive bladder syndrome. BJU Int. 2011;107(4):612–20.PubMedCrossRefGoogle Scholar
  101. 101.
    Fröhlich G, Burmeister S, Wiedemann A, Bulitta M. Intravesical instillation of trospium chloride, oxybutynin and verapamil for relaxation of the bladder detrusor muscle. A placebo controlled, randomized clinical test. Arzneimittelforschung. 1998;48(5):486–91. [Article in German].Google Scholar
  102. 102.
    Walter P, Grosse J, Bihr AM, Kramer G, Schulz HU, Schwantes U, Stöhrer M. Bioavailability of trospium chloride after intravesical instillation in patients with neurogenic lower urinary tract dysfunction: a pilot study. Neurourol Urodyn. 1999;18(5):447–53.PubMedCrossRefGoogle Scholar
  103. 103.
    Ruffmann R. A review of flavoxate hydrochloride in the treatment of urge incontinence. J Int Med Res. 1988;16(5):317–30.PubMedCrossRefGoogle Scholar
  104. 104.
    Guarneri L, Robinston E, Testa R. A review of flavoxate: pharmacology and mechanism of action. Drugs Today. 1994;30:91–9.Google Scholar
  105. 105.
    Oka M, Kimura Y, Itoh Y, Sasaki Y, Taniguchi N, Ukai Y, et al. Brain pertussis toxin-sensitive G proteins are involved in the flavoxate hydrochloride-induced suppression of the micturition reflex in rats. Brain Res. 1996;727(1–2):91–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Kimura Y, Sasaki Y, Hamada K, Fukui H, Ukai Y, Yoshikuni Y, et al. Mechanisms of suppression of the bladder activity by flavoxate. Int J Urol. 1996;3(3):218–27.PubMedCrossRefGoogle Scholar
  107. 107.
    Milani R, Scalambrino S, Milia R, Sambruni D, Riva L, Pulici F, et al. Double-blind crossover comparison of flavoxate and oxybutynin in women affected by urinary urge syndrome. Int Urogynecol J. 1993;4(1):3–8.CrossRefGoogle Scholar
  108. 108.
    Briggs RS, Castleden CM, Asher MJ. The effect of flavoxate on uninhibited detrusor contractions and urinary incontinence in the elderly. J Urol. 1980;123(5):665–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Chapple CR, Parkhouse H, Gardener C, Milroy EJ. Double-blind, placebo-controlled, cross-over study of flavoxate in the treatment of idiopathic detrusor instability. Br J Urol. 1990;66(5):491–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Waldeck K, Larsson B, Andersson KE. Comparison of oxybutynin and its active metabolite, N-desethyl-oxybutynin, in the human detrusor and parotid gland. J Urol. 1997;157(3):1093–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Thompson I, Lauvetz R. Oxybutynin in bladder spasm, neurogenic bladder and enuresis. Urology. 1976;8(5):452–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Andersson KE. Current concepts in the treatment of disorders of micturition. Drugs. 1988;35(4):477–94.PubMedCrossRefGoogle Scholar
  113. 113.
    Thüroff JW, Chartier-Kastler E, Corcus J, Humke J, Jonas U, Palmtag H, Tanagho EA. Medical treatment and medical side effects in urinary incontinence in the elderly. World J Urol. 1998;16(Suppl 1):S48–61.PubMedCrossRefGoogle Scholar
  114. 114.
    Baigrie RJ, Kelleher JP, Fawcett DP, Pengelly AW. Oxybutynin: is it safe? Br J Urol. 1988;62(4):319–22.PubMedCrossRefGoogle Scholar
  115. 115.
    Gupta SK, Sathyan G. Pharmacokinetics of an oral once-a-day controlled-release oxybutynin formulation compared with immediate-release oxybutynin. J Clin Pharmacol. 1999;39:289–96.PubMedGoogle Scholar
  116. 116.
    Chancellor MB, Appell RA, Sathyan G, Gupta SK. A comparison of the effects on saliva output of oxybutynin chloride and tolterodine tartate. Clin Ther. 2001;23(5):753–60.PubMedCrossRefGoogle Scholar
  117. 117.
    Anderson RU, Mobley D, Blank B, Saltzstein D, Susset J, Brown JS. Once daily controlled versus immediate release oxybutynin chloride for urge urinary incontinence. OROS Oxybutynin Study Group. J Urol. 1999;161(6):1809–12.PubMedCrossRefGoogle Scholar
  118. 118.
    Corcos J, Casey R, Patrick A, Andreou C, Miceli PC, Reiz JL; Uromax Study Group, et al. A double-blind randomized dose-response study comparing daily doses of 5, 10 and 15 mg controlled-release oxybutynin: balancing efficacy with severity of dry mouth. BJU Int. 2006;97(3):520–527.PubMedCrossRefGoogle Scholar
  119. 119.
    Dmochowski RR, Davila GW, Zinner NR, Gittelman MC, Saltzstein DR, Lyttle S, Sanders SW; Transdermal Oxybutynin Study Group. Efficacy and safely of transdermal oxybutynin in patients with urge and mixed urinary incontinence. J Urol. 2002;168(2):580–586.Google Scholar
  120. 120.
    Davila GW, Daugherty CA, Sanders SW; Transdermal Oxybutynin Study Group. A short-term, multicenter, randomized double-blind dose titration study of the efficacy and anticholinergic side effects of transdermal compared to immediate release oral oxybutynin treatment of patients with urge urinary incontinence. J Urol. 2001;166(1):150–1.Google Scholar
  121. 121.
    Dmochowski RR, Sand PK, Zinner NR, Gittelman MC, Davila GW, Sanders SW; Transdermal Oxybutynin Study Group. Comparative efficacy and safety of transdermal oxybutynin and oral tolterodine versus placebo in previously treated patients with urge and mixed urinary incontinence. Urology. 2003;62(2):237–242.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Appell RA. Efficacy and safety of transdermal oxybutynin in patients with urge and mixed urinary incontinence. Curr Urol Rep. 2003;4(5):343.PubMedCrossRefGoogle Scholar
  123. 123.
    Cartwright R, Cardozo L. Transdermal oxybutynin: sticking to the facts. Eur Urol. 2007;51(4):907–14.PubMedCrossRefGoogle Scholar
  124. 124.
    Cartwright R, Srikrishna S, Cardozo L, Robinson D. Patient-selected goals in overactive bladder: a placebo controlled randomized double-blind trial of transdermal oxybutynin for the treatment of urgency and urge incontinence. BJU Int. 2011;107(1):70–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Gleason JM, Daniels C, Williams K, Varghese A, Koyle MA, Bägli DJ, et al. Single center experience with oxybutynin transdermal system (patch) for management of symptoms related to non-neuropathic overactive bladder in children: an attractive, well tolerated alternative form of administration. J Pediatr Urol. 2014;10(4):753–7.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Yamaguchi O, Uchida E, Higo N, Minami H, Kobayashi S, Sato H; Oxybutynin Patch Study Group. Efficacy and safety of once-daily oxybutynin patch versus placebo and propiverine in Japanese patients with overactive bladder: a randomized double-blind trial. Int J Urol. 2014;21(6):586–593.Google Scholar
  127. 127.
    Connor JP, Betrus G, Fleming P, Perlmutter AD, Reitelman C. Early cystometrograms can predict the response to intravesical instillation of oxybutynin chloride in myelomeningocele patients. J Urol. 1994;151(4):1045–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Szollar SM, Lee SM. Intravesical oxybutynin for spinal cord injury patients. Spinal Cord. 1996;34(5):284–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Madersbacher H, Jilg G. Control of detrusor hyperreflexia by the intravesical instillation of oxybutynin hydrochloride. Paraplegia. 1991;29(2):84–90.PubMedGoogle Scholar
  130. 130.
    Enzelsberger H, Helmer H, Kurz C. Intravesical instillation of oxybutynin in women with idiopathic detrusor instability: a randomized trial. Br J Obstet Gynaecol. 1995;102(11):929–39.PubMedCrossRefGoogle Scholar
  131. 131.
    Staskin DR, Dmochowski RR, Sand PK, Macdiarmid SA, Caramelli KE, Thomas H, Hoel G. Efficacy and safety of oxybutynin chloride topical gel for overactive bladder: a randomized, double-blind, placebo controlled, multicenter study. J Urol. 2009;181(4):1764–72.PubMedCrossRefGoogle Scholar
  132. 132.
    Sand PK, Davila GW, Lucente VR, Thomas H, Caramelli KE, Hoel G. Efficacy and safety of oxybutynin chloride topical gel for women with overactive bladder syndrome. Am J Obstet Gynecol. 2012;206(2):168.e161–6.CrossRefGoogle Scholar
  133. 133.
    Goldfischer ER, Sand PK, Thomas H, Peters-Gee J. Efficacy and safety of oxybutynin topical gel 3% in patients with urgency and/or mixed urinary incontinence: a randomized, double-blind, placebo-controlled study. Neurourol Urodyn. 2015;34(1):37–43.PubMedCrossRefGoogle Scholar
  134. 134.
    Haruno A. Inhibitory effects of propiverine hydrochloride on the agonist-induced or spontaneous contractions of various isolated muscle preparations. Arzneimittelforschung. 1992;42(6):815–7.PubMedGoogle Scholar
  135. 135.
    Stöhrer M, Madersbacher H, Richter R, Wehnert J, Dreikorn K. Efficacy and safety of propiverine in SCI patients suffering from detrusor hyperreflexia—a double-blind, placebo-controlled clinical trial. Spinal Cord. 1999;37(3):196–200.PubMedCrossRefGoogle Scholar
  136. 136.
    Stöhrer M, Mürtz G, Kramer G, Schnabel F, Arnold EP, Wyndaele JJ; Propiverine Investigator Group. Propiverine compared to oxybutynin in neurogenic detrusor overactivity- results of a randomized, double-blind, multicenter clinical study. Eur Urol. 2007;51(1):235–242.Google Scholar
  137. 137.
    Madersbacher H, Halaska M, Voigt R, Alloussi S, Höfner K. A placebo-controlled, multicentre study comparing the tolerability and efficacy of propiverine and oxybutynin in patients with urgency and urge incontinence. BJU Int. 1999;84(6):646–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Jünemann KP, Halaska M, Rittstein T, Mürtz G, Schnabel F, Brünjes R, Nurkiewicz W. Propiverine versus tolterodine: efficacy and tolerability in patients with overactive bladder. Eur Urol. 2005;48(3):478–82.PubMedCrossRefGoogle Scholar
  139. 139.
    Abrams P, Cardozo L, Chapple C. Comparison of the efficacy, safety, and tolerability of propiverine and oxybutynin for the treatment of overactive bladder syndrome. Int J Urol. 2006;13(6):692–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Yamaguchi O, Marui E, Kakizaki H, Itoh N, Yokota T, Okada H; Japanese Solifenacin Study Group, et al. Randomized, double-blind, placebo- and propiverine-controlled trial of the once-daily antimuscarinic agent solifenacin in Japanese patients with overactive bladder. BJU Int. 2007;100(3):579–587.PubMedCrossRefGoogle Scholar
  141. 141.
    Leng J, Liao L, Wan B, Du C, Li W, Xie K, et al. Results of a randomized, double-blind, active-controlled clinical trial with propiverine extended release 30 mg in patients with overactive bladder. BJU Int. 2017;119(1):148–57.PubMedCrossRefGoogle Scholar
  142. 142.
    Ancelin ML, Artero S, Portet F, Dupuy AM, Touchon J, Ritchie K. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. BMJ. 2006;332(7539):455–9.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Gray SL, Anderson ML, Dublin S, Hanlon JT, Hubbard R, Walker R, et al. Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern Med. 2015;175(3):401–7.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Kay GG, Ebinger U. Preserving cognitive function for patients with overactive bladder: evidence for a differential effect with darifenacin. Int J Clin Pract. 2008;62(11):1792–800.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Staskin D, Kay G, Tannenbaum C, Goldman HB, Bhashi K, Ling J, Oefelein MG. Trospium chloride has no effect on memory testing and is assay undetectable in the central nervous system of older patients with overactive bladder. Int J Clin Pract. 2010;64(9):1294–300.PubMedCrossRefGoogle Scholar
  146. 146.
    Hashimoto M, Imamura T, Tanimukai S, Kazui H, Mori E. Urinary incontinence: an unrecognised adverse effect with donepezil. Lancet. 2000;356(9229):568.PubMedCrossRefGoogle Scholar
  147. 147.
    Sakakibara R, Ogata T, Uchiyama T, Kishi M, Ogawa E, Isaka S, et al. How to manage overactive bladder in elderly individuals with dementia? A combined use of donepezil, a central acetylcholinesterase inhibitor, and propiverine, a peripheral muscarine receptor antagonist. J Am Geriatr Soc. 2009;57(8):1515–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Sink KM, Thomas J 3rd, Xu H, Craig B, Kritchevsky S, Sands LP. Dual use of bladder anticholinergics and cholinesterase inhibitors: long-term functional and cognitive outcomes. J Am Geriatr Soc. 2008;56(5):847–53.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Kato K, Furuhashi K, Suzuki K, Murase T, Sato E, Gotoh M. Overactive bladder and glaucoma: a survey at outpatient clinics in Japan. Int J Urol. 2007;14(7):595–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Fink AM, Aylward GW. Buscopan and glaucoma: a survey of current practice. Clin Radiol. 1995;50(3):160–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations