Skip to main content

Part of the book series: Current Clinical Psychiatry ((CCPSY))

Abstract

Photobiomodulation (PBM) is a novel device-based treatment for major depressive disorder (MDD). PBM delivers near-infrared (NIR) or red light transcranially or systemically, aiming to modulate mitochondrial bioenergetics metabolism via the delivery of energy to the cytochrome c oxidase (CCO) enzyme. This primary action on mitochondria can lead to secondary effects on other pathways relevant for MDD such as oxidative stress, inflammation, and neurogenesis. Evidence supports that a fraction of the light delivered transcranially can reach the brain and modulate cortical activity and that light delivered in the periphery can exert systemic effects that include the brain. Preclinical studies indicate that PBM can treat depression-like behaviors in animal models of depression and also give some guidance on the optimal stimulation parameters. According to these studies, repeated sessions are more effective than a single session, and pulsed wave is more effective than continuous wave. Clinical studies also support the antidepressant effect of PBM and reinforce the need of repeated sessions. Clinical evidence also indicates that PBM can induce mild adverse effects, but the incidence of serious adverse effects is not different from that observed in sham (i.e., placebo) treatment. At this moment, PBM is an over-the-counter treatment for MDD and can be considered an alternative for patients who do not respond, tolerate, or accept antidepressant medication, evidence-based psychotherapies, or other FDA-approved device-based treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamblin MR. Shining light on the head: photobiomodulation for brain disorders. BBA Clin. 2016;6:113–24.

    Article  Google Scholar 

  2. Cassano P, Petrie SR, Hamblin MR, Henderson TA, Iosifescu DV. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics. 2016;3(3):031404.

    Article  Google Scholar 

  3. Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Nat Publ Group. 2016;6(1):33719.

    CAS  Google Scholar 

  4. Chung H, Dai T, Sharma SK, Huang Y-Y, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–33.

    Article  Google Scholar 

  5. Mochizuki-Oda N, Kataoka Y, Cui Y, Yamada H, Heya M, Awazu K. Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neurosci Lett. 2002;323(3):207–10.

    Article  CAS  Google Scholar 

  6. Kennedy SH, Konarski JZ, Segal ZV, Lau MA, Bieling PJ, McIntyre RS, et al. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry. 2007;164(5):778–88.

    Article  Google Scholar 

  7. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry. 2000;48(8):830–43.

    Article  CAS  Google Scholar 

  8. Iosifescu DV, Bolo NR, Nierenberg AA, Jensen JE, Fava M, Renshaw PF. Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry. 2008;63(12):1127–34.

    Article  CAS  Google Scholar 

  9. Bansal Y, Kuhad A. Mitochondrial dysfunction in depression. Curr Neuropharmacol. 2016;14(6):610–8.

    Article  CAS  Google Scholar 

  10. Klinedinst NJ, Regenold WT. A mitochondrial bioenergetic basis of depression. J Bioenerg Biomembr. 5 ed. Springer US. 2015;47(1–2):155–71.

    Article  Google Scholar 

  11. Salehpour F, Rasta SH. The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Rev Neurosci. 2017;28(4):441–53.

    Article  CAS  Google Scholar 

  12. Sommer AP, Trelles MA. Light pumping energy into blood mitochondria: a new trend against depression? Photomed Laser Surg. 2014;32(2):59–60.

    Article  Google Scholar 

  13. Hroudová J, Fišar Z, Kitzlerová E, Zvěřová M, Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13(6):795–800.

    Article  Google Scholar 

  14. McGuff PE, Deterling RA, Gottlieb LS. Tumoricidal effect of laser energy on experimental and human malignant tumors. N Engl J Med. 1965;273(9):490–2.

    Article  CAS  Google Scholar 

  15. Mester E, Szende B, Gärtner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl). 1968;9(5):621–6.

    CAS  Google Scholar 

  16. Kovács IB, Mester E, Görög P. Stimulation of wound healing with laser beam in the rat. Experientia. 1974;30(11):1275–6.

    Article  Google Scholar 

  17. Ferraresi C, Hamblin MR, Parizotto NA. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photon Lasers Med. 2012;1(4):267–86.

    Article  Google Scholar 

  18. Chaves ME de A, Araújo AR, de Piancastelli ACC, Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol. 2014;89(4):616–23.

    Article  Google Scholar 

  19. Harkless LB, DeLellis S, Carnegie DH, Burke TJ. Improved foot sensitivity and pain reduction in patients with peripheral neuropathy after treatment with monochromatic infrared photo energy – MIRE. J Diabetes Complicat. 2006;20(2):81–7.

    Article  Google Scholar 

  20. Allais G, De Lorenzo C, Quirico PE, Lupi G, Airola G, Mana O, et al. Non-pharmacological approaches to chronic headaches: transcutaneous electrical nerve stimulation, laser therapy and acupuncture in transformed migraine treatment. Neurol Sci. 2003;24(Suppl 2):S138–42.

    PubMed  Google Scholar 

  21. Hersant B, SidAhmed-Mezi M, Bosc R, Meningaud JP. Current indications of low-level laser therapy in plastic surgery: a review. Photomed Laser Surg. 2015;33(5):283–97.

    Article  Google Scholar 

  22. Russell BA, Kellett N, Reilly LR. A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation. J Cosmet Laser Ther. 2005;7(3–4):196–200.

    Article  CAS  Google Scholar 

  23. Zarei M, Wikramanayake TC, Falto-Aizpurua L, Schachner LA, Jimenez JJ. Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med Sci. Springer London. 2016;31(2):363–71.

    Article  Google Scholar 

  24. Rochkind S, Barr-Nea L, Bartal A, Nissan M, Lubart R, Razon N. New methods of treatment of severely injured sciatic nerve and spinal cord. An experimental study. Acta Neurochir Suppl (Wien). 1988;43:91–3.

    CAS  Google Scholar 

  25. Rochkind S, Ouaknine GE. New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies). Neurol Res. 1992;14(1):2–11.

    Article  CAS  Google Scholar 

  26. Rochkind S, Vogler I, Barr-Nea L. Spinal cord response to laser treatment of injured peripheral nerve. Spine. 1990;15(1):6–10.

    Article  CAS  Google Scholar 

  27. Anders JJ. The potential of light therapy for central nervous system injury and disease. Photomed Laser Surg. 2009;27(3):379–80.

    Article  Google Scholar 

  28. Lapchak PA, Salgado KF, Chao CH, Zivin JA. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience. 2007;148(4):907–14.

    Article  CAS  Google Scholar 

  29. Lapchak PA, Wei J, Zivin JA. Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke. 2004;35(8):1985–8.

    Article  Google Scholar 

  30. Oron A, Oron U, Chen J, Eilam A, Zhang C, Sadeh M, et al. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke. 2006 Oct;37(10):2620–4.

    Article  Google Scholar 

  31. Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R, et al. Transcranial laser therapy in acute stroke treatment: results of neurothera effectiveness and safety trial 3, a phase III clinical end point device trial. Stroke. American Heart Association, Inc. 2014;45(11):3187–93.

    Google Scholar 

  32. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. Lippincott Williams & Wilkins. 2009;40(4):1359–64.

    Article  Google Scholar 

  33. Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke. 2007;38(6):1843–9.

    Article  Google Scholar 

  34. Ando T, Xuan W, Xu T, Dai T, Sharma SK, Kharkwal GB, et al. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS One. 2011;6(10):e26212.

    Article  CAS  Google Scholar 

  35. Huang Y-Y, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy – an update. Dose Response. 2011;9(4):602–18.

    Article  CAS  Google Scholar 

  36. Huang Y-Y, Gupta A, Vecchio D, de Arce VJB, Huang S-F, Xuan W, et al. Transcranial low level laser (light) therapy for traumatic brain injury. Kirillin M, Sokolov K, Shakhova N, Steiner R, editors. J Biophotonics. 2012;5(11–12):827–37.

    Google Scholar 

  37. Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics. 2015;8(6):502–11.

    Article  CAS  Google Scholar 

  38. Xuan W, Vatansever F, Huang L, Wu Q, Xuan Y, Dai T, et al. Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen. Borlongan CV, editor. PLoS One. 2013;8(1):e53454.

    Google Scholar 

  39. Xuan W, Vatansever F, Huang L, Hamblin MR. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J Biomed Opt. 2014;19(10):108003.

    Article  Google Scholar 

  40. Naeser MA, Martin PI, Ho MD, Krengel MH, Bogdanova Y, Knight JA, et al. Transcranial, red/near-infrared light-emitting diode therapy to improve cognition in chronic traumatic brain injury. Photomed Laser Surg. 2016;34(12):610–26.

    Article  CAS  Google Scholar 

  41. Naeser MA, Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma. 2014;31(11):1008–17.

    Article  Google Scholar 

  42. Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg. 2011;29(5):351–8.

    Article  Google Scholar 

  43. Purushothuman S, Johnstone DM, Nandasena C, Mitrofanis J, Stone J. Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex – evidence from two transgenic mouse models. Alzheimers Res Ther. BioMed Central. 2014;6(1):2.

    Article  Google Scholar 

  44. De Taboada L, Yu J, El-Amouri S, Gattoni-Celli S, Richieri S, McCarthy T, et al. Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. J Alzheimers Dis. IOS Press. 2011;23(3):521–35.

    Google Scholar 

  45. Tanaka Y, Akiyoshi J, Kawahara Y, Ishitobi Y, Hatano K, Hoaki N, et al. Infrared radiation has potential antidepressant and anxiolytic effects in animal model of depression and anxiety. Brain Stimul. 2011;4(2):71–6.

    Article  Google Scholar 

  46. Mohammed HS. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med Sci. Springer London. 2016;31(8):1651–6.

    Article  Google Scholar 

  47. Xu Z, Guo X, Yang Y, Tucker D, Lu Y, Xin N, et al. Low-level laser irradiation improves depression-like behaviors in mice. Mol Neurobiol. 2016;34(1):13.

    Google Scholar 

  48. Wu X, Alberico SL, Moges H, De Taboada L, Tedford CE, Anders JJ. Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress. Lasers Surg Med. Wiley Subscription Services, Inc., A Wiley Company. 2012;44(3):227–32.

    Google Scholar 

  49. Salehpour F, Rasta SH, Mohaddes G, Sadigh-Eteghad S, Salarirad S. Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: a comparison between near-infrared and red wavelengths. Lasers Surg Med. 2016;48(7):695–705.

    Article  Google Scholar 

  50. Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct. 2009;5(1):46.

    Article  Google Scholar 

  51. Cassano P, Cusin C, Mischoulon D, Hamblin MR, De Taboada L, Pisoni A, et al. Near-infrared transcranial radiation for major depressive disorder: proof of concept study. Psychiatry J. 2015;2015:352979.

    Article  Google Scholar 

  52. Mogoaşe C, David D, Koster EHW. Clinical efficacy of attentional bias modification procedures: an updated meta-analysis. J Clin Psychol. Wiley-Blackwell. 2014;70(12):1133–57.

    Article  Google Scholar 

  53. Disner SG, Beevers CG, Gonzalez-Lima F. Transcranial laser stimulation as neuroenhancement for attention bias modification in adults with elevated depression symptoms. Brain Stimul. 2016;9(5):780–7.

    Article  Google Scholar 

  54. Joffe RT, Uhde TW, Post RM, Minichiello MD. Motor activity in depressed patients treated with carbamazepine. Biol Psychiatry. 1987;22(8):941–6.

    Article  CAS  Google Scholar 

  55. Caldieraro MA, Sani G, Bui E, Cassano P. Long-term near-infrared photobiomodulation for anxious depression complicated by Takotsubo Cardiomyopathy. J Clin Psychopharmacol. 2018;38(3):268–70.

    Article  Google Scholar 

  56. Kartelishev AV, Kolupaev GP, Vernekina NS, Chebotkov AA, Lakosina ND, Ushakov AA. Laser technologies used in the complex treatment of psychopharmacotherapy resistant endogenic depression. Voen Med Zh. 2004;325(11):37–42.

    CAS  PubMed  Google Scholar 

  57. Kolupaev GP, Kartelishev AV, Vernekina NS, Chebotkov AA, Lakosina ND. Technologies of laser prophylaxis of depressive disorder relapses. Voen Med Zh. 2007;328(2):31–4.

    CAS  PubMed  Google Scholar 

  58. Quah-Smith I, Smith C, Crawford JD, Russell J. Laser acupuncture for depression: a randomised double blind controlled trial using low intensity laser intervention. J Affect Disord. 2013;148(2–3):179–87.

    Article  Google Scholar 

  59. Quah-Smith JI, Tang WM, Russell J. Laser acupuncture for mild to moderate depression in a primary care setting – a randomised controlled trial. Acupunct Med. 2005;23(3):103–11.

    Article  Google Scholar 

  60. Huisa BN, Stemer AB, Walker MG, Rapp K, Meyer BC, Zivin JA, et al. Transcranial laser therapy for acute ischemic stroke: a pooled analysis of NEST-1 and NEST-2. Int J Stroke. 2013;8(5):315–20.

    Article  Google Scholar 

  61. Morries LD, Cassano P, Henderson TA. Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr Dis Treat. Dove Press. 2015;11:2159–75.

    Google Scholar 

  62. Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg. 2005;23(4):355–61.

    Article  CAS  Google Scholar 

  63. Morava E, Kozicz T. Mitochondria and the economy of stress (mal)adaptation. Neurosci Biobehav Rev. 2013;37(4):668–80.

    Article  CAS  Google Scholar 

  64. Karabatsiakis A, Böck C, Salinas-Manrique J, Kolassa S, Calzia E, Dietrich DE, et al. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl Psychiatry. 2014;4(6):e397.

    Article  CAS  Google Scholar 

  65. Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol. 1997;66(6):866–71.

    Article  CAS  Google Scholar 

  66. Oron U, Ilic S, De Taboada L, Streeter J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg. 2007;25(3):180–2.

    Article  CAS  Google Scholar 

  67. de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):348–64.

    Article  Google Scholar 

  68. Greco M, Guida G, Perlino E, Marra E, Quagliariello E. Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biochem Biophys Res Commun. 1989;163(3):1428–34.

    Article  CAS  Google Scholar 

  69. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology. 2015;51:164–75.

    Article  CAS  Google Scholar 

  70. Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol. John Wiley & Sons, Ltd. 2007;22(2):67–73.

    Google Scholar 

  71. Eren I, Naziroğlu M, Demirdaş A. Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem Res 3rd ed. Kluwer Academic Publishers-Plenum Publishers. 2007;32(7):1188–95.

    Google Scholar 

  72. Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke JP, et al. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed John Wiley & Sons, Ltd. 2012;25(9):1073–87.

    Article  CAS  Google Scholar 

  73. Spanemberg L, Caldieraro M, Arrua Vares E, Wollenhaupt de Aguiar B, Yuri Kawamoto S, Parker G, et al. Biological differences between melancholic and nonmelancholic depression subtyped by the CORE measure. Neuropsychiatr Dis Treat. 2014;10:1523.

    Article  Google Scholar 

  74. Ozcan ME, Gulec M, Ozerol E, Polat R, Akyol O. Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol. 2004;19(2):89–95.

    Article  Google Scholar 

  75. Rizzi CF, Mauriz JL, Freitas Corrêa DS, Moreira AJ, Zettler CG, Filippin LI, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med. Wiley Subscription Services, Inc., A Wiley Company. 2006;38(7):704–13.

    Google Scholar 

  76. Chludzińska L, Ananicz E, Jarosławska A, Komorowska M. Near-infrared radiation protects the red cell membrane against oxidation. Blood Cells Mol Dis. 2005;35(1):74–9.

    Article  Google Scholar 

  77. Anisman H, Hayley S. Inflammatory factors contribute to depression and its comorbid conditions. Sci Signal. 2012;5(244):pe45–5.

    Article  Google Scholar 

  78. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    Article  CAS  Google Scholar 

  79. Liu Y, Ho RC-M, Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord. 2012;139(3):230–9.

    Article  CAS  Google Scholar 

  80. Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–87.

    Article  Google Scholar 

  81. Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L, et al. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry. 2009;66(3):287–92.

    Article  CAS  Google Scholar 

  82. Yoshimura R, Hori H, Ikenouchi-Sugita A, Umene-Nakano W, Ueda N, Nakamura J. Higher plasma interleukin-6 (IL-6) level is associated with SSRI- or SNRI-refractory depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(4):722–6.

    Article  CAS  Google Scholar 

  83. Araki H, Imaoka A, Kuboyama N, Abiko Y. Reduction of interleukin-6 expression in human synoviocytes and rheumatoid arthritis rat joints by linear polarized near infrared light (Superlizer) irradiation. Laser Ther. 2011;20(4):293–300.

    Article  Google Scholar 

  84. Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med Wiley Subscription Services, Inc., A Wiley Company. 2009;41(4):282–90.

    Google Scholar 

  85. Khuman J, Zhang J, Park J, Carroll JD, Donahue C, Whalen MJ. Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma. 2012;29(2):408–17.

    Article  Google Scholar 

  86. Duman RS. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci. 2014;16(1):11–27.

    PubMed  PubMed Central  Google Scholar 

  87. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Daws LC, editor. Pharmacol Rev. 2012;64(2):238–58.

    Google Scholar 

  88. Molendijk ML, Spinhoven P, Polak M, Bus BAA, Penninx BWJH, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry. 2014;19(7):791–800.

    Article  CAS  Google Scholar 

  89. Molendijk ML, Bus BAA, Spinhoven P, Penninx BWJH, Kenis G, Prickaerts J, et al. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry. 2011;16(11):1088–95.

    Article  CAS  Google Scholar 

  90. Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol. 2011;9(4):530–52.

    Article  CAS  Google Scholar 

  91. Giuliani A, Lorenzini L, Gallamini M, Massella A, Giardino L, Calzà L. Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress. BMC Complement Altern Med. 2009;9(1):8.

    Article  Google Scholar 

  92. Rojas JC, Lee J, John JM, Gonzalez-Lima F. Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J Neurosci. 2008;28(50):13511–21.

    Article  CAS  Google Scholar 

  93. Wong-Riley MTT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280(6):4761–71.

    Article  CAS  Google Scholar 

  94. Wu Q, Xuan W, Ando T, Xu T, Huang L, Huang Y-Y, et al. Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med Wiley Subscription Services, Inc., A Wiley Company. 2012;44(3):218–26.

    Google Scholar 

  95. Oron A, Oron U, Streeter J, De Taboada L, Alexandrovich A, Trembovler V, et al. Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma. 2007;24(4):651–6.

    Article  Google Scholar 

  96. Rojas JC, Bruchey AK, Gonzalez-Lima F. Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis. IOS Press. 2012;32(3):741–52.

    Article  Google Scholar 

  97. Uozumi Y, Nawashiro H, Sato S, Kawauchi S, Shima K, Kikuchi M. Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg Med. Wiley Subscription Services, Inc., A Wiley Company. 2010;42(6):566–76.

    Google Scholar 

  98. Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand. 2000;101(1):11–20.

    Article  CAS  Google Scholar 

  99. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12(6):527–44.

    Article  CAS  Google Scholar 

  100. Tian F, Hase SN, Gonzalez-Lima F, Liu H. Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg Med. 2016;48(4):343–9.

    Article  Google Scholar 

  101. Salgado ASI, Zângaro RA, Parreira RB, Kerppers II. The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. Lasers Med Sci. 2015;30(1):339–46.

    Article  Google Scholar 

  102. Konstantinović LM, Jelić MB, Jeremić A, Stevanović VB, Milanović SD, Filipović SR. Transcranial application of near-infrared low-level laser can modulate cortical excitability. Lasers Surg Med. 2013;45(10):648–53.

    Article  Google Scholar 

  103. Ho MD, Martin PI, Yee MK, Koo B, Baker E, Hamblin MR, et al. Increased functional connectivity in default mode network associated with application of transcranial, light-emitting diodes to treat chronic aphasia: case series. J Int Neuropsychol Soc. 2016;22(S1):229.

    Google Scholar 

  104. Quah-Smith I, Wen W, Chen X, Williams MA, Sachdev PS. The brain effects of laser acupuncture in depressed individuals: an fMRI investigation. Med Acupunct. 2012;24(3):161–71.

    Article  Google Scholar 

  105. Yue L, Humayun MS. Monte Carlo analysis of the enhanced transcranial penetration using distributed near-infrared emitter array. J Biomed Opt. 2015;20(8):88001.

    Article  Google Scholar 

  106. Tedford CE, DeLapp S, Jacques S, Anders J. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Lasers Surg Med. 2015;47(4):312–22.

    Article  Google Scholar 

  107. Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. Dove Press. 2015;11:2191–208.

    Google Scholar 

  108. Jagdeo JR, Adams LE, Brody NI, Siegel DM. Transcranial red and near infrared light transmission in a cadaveric model. Hamblin M, editor. PLoS One. 2012;7(10):e47460.

    Google Scholar 

  109. Yue L, Monge M, Ozgur MH, Murphy K, Louie S, Miller CA, et al. Simulation and measurement of transcranial near infrared light penetration. San Francisco, California. SPIE BiOS. 2015;9321:93210S1–6.

    Google Scholar 

  110. Pitzschke A, Lovisa B, Seydoux O, Zellweger M, Pfleiderer M, Tardy Y, et al. Red and NIR light dosimetry in the human deep brain. Phys Med Biol. 2015;60(7):2921–37.

    Article  CAS  Google Scholar 

  111. Hashmi JT, Huang Y-Y, Sharma SK, Kurup DB, De Taboada L, Carroll JD, et al. Effect of pulsing in low-level light therapy. Lasers Surg Med. 2010;42(6):450–66.

    Article  Google Scholar 

  112. Sharma SK, Kharkwal GB, Sajo M, Huang Y-Y, De Taboada L, McCarthy T, et al. Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med. 2011;43(8):851–9.

    Article  Google Scholar 

  113. Cassano P, Petrie SR, Mischoulon D, Ionescu DF, Cusin C, Katnani H, et al. Transcranial photobiomodulation for the treatment of major depressive disorder: the ELATED-2 clinical trial. Neuropsychopharmacology. 2016;41:S354–5.

    Google Scholar 

  114. Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM, Suppes T, et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry. 2005;162(4):656–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Cassano .

Editor information

Editors and Affiliations

FAQs: Common Questions and Answers

FAQs: Common Questions and Answers

  • Q1. How is PBM different from other device-based treatments for MDD?

  • A1. Other device-based treatments used to treat MDD modulate the electric potential of neuron membranes using electric currents (e.g., ECT, TDCS) or magnetic pulses (e.g., rTMS). The exact mechanism of action of PBM is not completely understood, but it seems to work by enhancing mitochondrial metabolism leading to improved neuronal functioning and secondary improvements on oxidative stress, inflammation, and neurogenesis.

  • Q2. How is PBM different from other light-based treatments?

  • A2. PBM is noninvasive, and NIR and red light are nonionizing electromagnetic irradiation , which are absorbed by specific endogenous chromophores and are minimally dissipated as thermal energy [5]. High-power lasers are used for ablative treatments and produce heating. Photodynamic therapy, such as for cancer chemotherapy, uses light to excite exogenously delivered chromophores (e.g., photosensitive anticancer drugs) to produce therapeutic reactive oxygen species (ROS) [67]. Bright light therapy uses light in the visible, broad spectra to stimulate the retina and suppress the release of melatonin and lengthen the photoperiod [114].

  • Q3. Is PBM safe during pregnancy and breast-feeding ?

  • A3. Considering the mechanism of action of PBM and the limited tissue penetration of NIR, PBM has the potential to become a safe treatment for MDD during pregnancy and breast-feeding. However, given the lack of evidence regarding safety in this special population, including the risks for the embryo and fetus, we do not recommend PBM for women who are pregnant or lactating.

  • Q4. Can PBM be combined with other antidepressant treatments?

  • A4. Published studies included cases of patients receiving PBM in combination with psychotherapy and antidepressant medications , and no serious adverse events were reported for these combinations. There are no reports on the combination of PBM with rTMS, TDCS, or ECT. There is no rationale for avoiding the simultaneous use of PBM with other device-based treatments: potentiation of the antidepressant effects might occur, and some side effects – such as memory impairment with ECT – might be mitigated.

  • Q5. How long should PBM be used for the treatment of MDD?

  • A5. One single session of t-PBM may produce a decrease of depressive symptoms, but this effect seems to be temporary [50]. More consistent improvement was observed in studies that used multiple sessions during 3–8 weeks for the treatment of an acute depressive episode [51, 113]. The safety profile of PBM suggests it could be used as maintenance treatment for responders. However, the only evidence for long-term use comes from a case report [55].

  • Q6. What is the difference between laser and LED light sources ?

  • A6. Laser devices deliver a single wavelength wave, while LEDs also deliver light in a small range of different wavelengths close to the nominal wave (typically a 30 nm band) [1]. More recent studies are focusing on LED devices because they are less expensive than lasers, and the clinical efficacy does not seem to be determined by the kind of light source.

  • Q7. How does PBM cost compare to other treatments?

  • A7. PBM is currently not reimbursed by US insurance carriers. The in-office administration of PBM is therefore expensive and entirely out-of-pocket, unlike for FDA-approved MDD treatments such as rTMS, ECT, and antidepressant medications. At-home self-administration of PBM still requires an upfront out-of-pocket expense, which averages between $400 and $2000 USD, depending on the chosen transcranial LED device. Some manufacturers have a 6-month return policy: during this period the full cost is reimbursed after the device is returned, based on lack of efficacy.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caldieraro, M.A., Cassano, P. (2019). Photobiomodulation. In: Shapero, B., Mischoulon, D., Cusin, C. (eds) The Massachusetts General Hospital Guide to Depression. Current Clinical Psychiatry. Humana Press, Cham. https://doi.org/10.1007/978-3-319-97241-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97241-1_18

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-97240-4

  • Online ISBN: 978-3-319-97241-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics