Advertisement

Recommendations for Ancillary Testing

Chapter
  • 513 Downloads

Abstract

Prior to the emergence of targeted therapeutics, conventional ancillary testing in respiratory cytology has included microbiologic culture for infectious agents, special stains and/or immunocytochemistry (ICC) for establishing a cytomorphologic diagnosis, and flow cytometry and/or fluorescence in situ hybridization (FISH) for hematolymphoid neoplasms. With the increasing use of molecular diagnostic assays for predictive, prognostic, and therapeutic purposes in lung carcinoma patients, the need for ancillary testing of lung cytology specimens has also expanded. Biomarker testing for tyrosine kinase inhibitors (TKIs) and immunotherapies using molecular and immunohistochemical methods now play a pivotal role in the management of non-small cell lung carcinoma (NSCLC) patients (Lindeman, Cagle, Aisner, Arcila, Beasley, Bernicker, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med, 2018). Since a large fraction of these patients present at an advanced stage of disease with unresectable tumors, cytology samples are often the only source of tissue for diagnosis and biomarker testing. Therefore, ancillary testing in lung cytology has expanded beyond its conventional role into a variety of molecular (nucleic acid and protein based) assays that have been integrated into routine cytopathology practice and play a key role in patient care. The Papanicolaou Society of Cytopathology System for Reporting Respiratory Cytology has therefore developed some recommendations for the use of ancillary testing in lung cytology (Layfield, Roy-Chowdhuri, Baloch, Ehya, Geisinger, Hsiao, et al. Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: the Papanicolaou Society of Cytopathology consensus recommendations for respiratory cytology. Diagn Cytopathol 44:1000–9, 2016).

Keywords

Ancillary studies Lung Cytology Immunocytochemistry Molecular Microbiology Culture Flow cytometry 

References

  1. 1.
    Layfield LJ, Roy-Chowdhuri S, Baloch Z, Ehya H, Geisinger K, Hsiao SJ, et al. Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: the papanicolaou society of cytopathology consensus recommendations for respiratory cytology. Diagn Cytopathol. 2016;44(12):1000–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker E, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321–46.Google Scholar
  3. 3.
    Maxwell P, Salto-Tellez M. Validation of immunocytochemistry as a morphomolecular technique. Cancer Cytopathol. 2016;124(8):540–5.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Fischer AH, Schwartz MR, Moriarty AT, Wilbur DC, Souers R, Fatheree L, et al. Immunohistochemistry practices of cytopathology laboratories: a survey of participants in the College of American Pathologists Nongynecologic Cytopathology Education Program. Arch Pathol Lab Med. 2014;138(9):1167–72.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Fitzgibbons PL, Bradley LA, Fatheree LA, Alsabeh R, Fulton RS, Goldsmith JD, et al. Principles of analytic validation of immunohistochemical assays: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2014;138(11):1432–43.CrossRefGoogle Scholar
  6. 6.
    Sauter JL, Grogg KL, Vrana JA, Law ME, Halvorson JL, Henry MR. Young investigator challenge: validation and optimization of immunohistochemistry protocols for use on cellient cell block specimens. Cancer Cytopathol. 2016;124(2):89–100.CrossRefGoogle Scholar
  7. 7.
    Hardy LB, Fitzgibbons PL, Goldsmith JD, Eisen RN, Beasley MB, Souers RJ, et al. Immunohistochemistry validation procedures and practices: a College of American Pathologists survey of 727 laboratories. Arch Pathol Lab Med. 2013;137(1):19–25.CrossRefGoogle Scholar
  8. 8.
    Layfield LJ, Glasgow BJ, DuPuis MH. Fine-needle aspiration of lymphadenopathy of suspected infectious etiology. Arch Pathol Lab Med. 1985;109(9):810–2.Google Scholar
  9. 9.
    Shetuni B, Lakey M, Kulesza P. Optimal specimen processing of fine needle aspirates of non-Hodgkin lymphoma. Diagn Cytopathol. 2012;40(11):984–6.CrossRefGoogle Scholar
  10. 10.
    Rekhtman N, Brandt SM, Sigel CS, Friedlander MA, Riely GJ, Travis WD, et al. Suitability of thoracic cytology for new therapeutic paradigms in non-small cell lung carcinoma: high accuracy of tumor subtyping and feasibility of EGFR and KRAS molecular testing. J Thorac Oncol. 2011;6(3):451–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243–60.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Rekhtman N, Ang DC, Sima CS, Travis WD, Moreira AL. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathol. 2011;24(10):1348–59.CrossRefGoogle Scholar
  13. 13.
    Kimbrell HZ, Gustafson KS, Huang M, Ehya H. Subclassification of non-small cell lung cancer by cytologic sampling: a logical approach with selective use of immunocytochemistry. Acta Cytol. 2012;56(4):419–24.CrossRefGoogle Scholar
  14. 14.
    Bishop JA, Teruya-Feldstein J, Westra WH, Pelosi G, Travis WD, Rekhtman N. p40 (DeltaNp63) is superior to p63 for the diagnosis of pulmonary squamous cell carcinoma. Mod Pathol. 2012;25(3):405–15.CrossRefGoogle Scholar
  15. 15.
    Pelosi G, Fabbri A, Bianchi F, Maisonneuve P, Rossi G, Barbareschi M, et al. DeltaNp63 (p40) and thyroid transcription factor-1 immunoreactivity on small biopsies or cellblocks for typing non-small cell lung cancer: a novel two-hit, sparing-material approach. J Thorac Oncol. 2012;7(2):281–90.CrossRefGoogle Scholar
  16. 16.
    Johnson H, Cohen C, Fatima N, Duncan D, Siddiqui MT. Thyroid transcription factor 1 and Napsin a double stain: utilizing different vendor antibodies for diagnosing lung adenocarcinoma. Acta Cytol. 2012;56(6):596–602.CrossRefGoogle Scholar
  17. 17.
    Travis WD. The 2015 WHO classification of lung tumors. Der Pathologe. 2014;35(Suppl 2):188.CrossRefGoogle Scholar
  18. 18.
    Kerr KM, Tsao MS, Nicholson AG, Yatabe Y, Wistuba II, Hirsch FR, et al. Programmed death-ligand 1 immunohistochemistry in lung Cancer: in what state is this art? J Thorac Oncol. 2015;10(7):985–9.CrossRefGoogle Scholar
  19. 19.
    Mino-Kenudson M. Programmed cell death ligand-1 (PD-L1) expression by immunohistochemistry: could it be predictive and/or prognostic in non-small cell lung cancer? Cancer Bio Med. 2016;13(2):157–70.CrossRefGoogle Scholar
  20. 20.
    Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K, et al. PD-L1 immunohistochemistry assays for lung Cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12(2):208–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Tsao MSKK, Dacic S, et al. IASLC atlas of PD-L1 immunohistochemistry testing in lung Cancer. 1st ed. International Association for the Study of Lung Cancer: IASLC; 2017.Google Scholar
  22. 22.
    Sholl LM, Aisner DL, Allen TC, Beasley MB, Borczuk AC, Cagle PT, et al. Programmed death Ligand-1 immunohistochemistry- a new challenge for pathologists: a perspective from members of the pulmonary pathology society. Arch Pathol Lab Med. 2016;140(4):341–4.CrossRefGoogle Scholar
  23. 23.
    Heymann JJ, Bulman WA, Swinarski D, Pagan CA, Crapanzano JP, Haghighi M, et al. Programmed death-ligand 1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens. Cancer. 2017;125(12):896–907.Google Scholar
  24. 24.
    Noll B, Wang WL, Gong Y, Zhao J, Kalhor N, Prieto V, et al. Programmed death ligand 1 testing in non-small cell lung carcinoma cytology cell block and aspirate smear preparations. Cancer Cytopathol. 2018;126:342.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Skov BG, Skov T. Paired comparison of PD-L1 expression on Cytologic and histologic specimens from malignancies in the lung assessed with PD-L1 IHC 28-8pharmDx and PD-L1 IHC 22C3pharmDx. Appl Immunohistochem Mol Morphol. 2017;25(7):453–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Stoy SP, Rosen L, Mueller J, Murgu S. Programmed death-ligand 1 testing of lung cancer cytology specimens obtained with bronchoscopy. Cancer. 2017;126(2):122–28.CrossRefGoogle Scholar
  27. 27.
    Gainor JF, Niederst MJ, Lennerz JK, Dagogo-Jack I, Stevens S, Shaw AT, et al. Dramatic response to combination Erlotinib and Crizotinib in a patient with advanced, EGFR-mutant lung Cancer harboring De novo MET amplification. J Thorac Oncol. 2016;11(7):e83–5.CrossRefGoogle Scholar
  28. 28.
    Lutterbach B, Zeng Q, Davis LJ, Hatch H, Hang G, Kohl NE, et al. Lung cancer cell lines harboring MET gene amplification are dependent on met for growth and survival. Cancer Res. 2007;67(5):2081–8.CrossRefGoogle Scholar
  29. 29.
    Ma PC. MET receptor juxtamembrane exon 14 alternative spliced variant: novel cancer genomic predictive biomarker. Cancer Discov. 2015;5(8):802–5.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T, et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci U S A. 1997;94(21):11445–50.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    GP NN, Kennedy EB, Biermann WA, Donington J, Leighl NB, et al. Molecular testing guideline for the selection of patients with lung Cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/association for molecular pathology clinical practice guideline update. J Clin Oncol. 2018;36(9):911–9.CrossRefGoogle Scholar
  32. 32.
    Killian JK, Walker RL, Suuriniemi M, Jones L, Scurci S, Singh P, et al. Archival fine-needle aspiration cytopathology (FNAC) samples: untapped resource for clinical molecular profiling. J Mol Diagn. 2010;12(6):739–45.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    da Cunha SG, Saieg MA, Geddie W, Leighl N. EGFR gene status in cytological samples of nonsmall cell lung carcinoma: controversies and opportunities. Cancer Cytopathol. 2011;119(2):80–91.CrossRefGoogle Scholar
  34. 34.
    Savic S, Tapia C, Grilli B, Rufle A, Bihl MP, de Vito BA, et al. Comprehensive epidermal growth factor receptor gene analysis from cytological specimens of non-small-cell lung cancers. Br J Cancer. 2008;98(1):154–60.CrossRefGoogle Scholar
  35. 35.
    Ko HM, Saieg MA, da Cunha SG, Kamel-Reid S, Boerner SL, Geddie WR. Use of cytological samples of metastatic melanoma for ancillary studies. Cytopathology. 2017;28(3):221–7.CrossRefGoogle Scholar
  36. 36.
    Billah S, Stewart J, Staerkel G, Chen S, Gong Y, Guo M. EGFR and KRAS mutations in lung carcinoma: molecular testing by using cytology specimens. Cancer Cytopathol. 2011;119(2):111–7.CrossRefGoogle Scholar
  37. 37.
    Young G, Wang K, He J, Otto G, Hawryluk M, Zwirco Z, Brennan T, Nahas M, Donahue A, Yelensky R, Lipson D, Sheehan CE, Boguniewicz AB, Stephens PJ, Miller VA, Ross JS. Clinical next-generation sequencing successfully applied to fine-needle aspirations of pulmonary and pancreatic neoplasms. Cancer Cytopathol. 2013;121(12):688–94.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jain D, Mathur SR, Iyer VK. Cell blocks in cytopathology: a review of preparative methods, utility in diagnosis and role in ancillary studies. Cytopathology. 2014;25(6):356–71.Google Scholar
  39. 39.
    Rekhtman N, Roy-Chowdhuri S. Cytology specimens: a goldmine for molecular testing. Arch Pathol Lab Med. 2016;140(11):1189–90.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Roy-Chowdhuri S, Chen H, Singh RR, Krishnamurthy S, Patel KP, Routbort MJ, et al. Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod Pathol. 2017;30(4):499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Treece AL, Montgomery ND, Patel NM, Civalier CJ, Dodd LG, Gulley ML, et al. FNA smears as a potential source of DNA for targeted next-generation sequencing of lung adenocarcinomas. Cancer Cytopathol. 2016;124(6):406–14.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lozano MD, Echeveste JI, Abengozar M, Mejias LD, Idoate MA, Calvo A, de Andrea CE. Cytology smears in the era of molecular biomarkers in non-small cell lung Cancer: doing more with less. Arch Pathol Lab Med. 2018;142(3):291–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, et al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol. 2014;27(2):314–27.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Karnes HE, Duncavage EJ, Bernadt CT. Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung. Cancer Cytopathol. 2014;122(2):104–13.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gailey MP, Stence AA, Jensen CS, Ma D. Multiplatform comparison of molecular oncology tests performed on cytology specimens and formalin-fixed, paraffin-embedded tissue. Cancer Cytopathol. 2015;123(1):30–9.CrossRefGoogle Scholar
  46. 46.
    Scarpa A, Sikora K, Fassan M, Rachiglio AM, Cappellesso R, Antonello D, et al. Molecular typing of lung adenocarcinoma on cytological samples using a multigene next generation sequencing panel. PLoS One. 2013;8(11):e80478.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Buttitta F, Felicioni L, Del Grammastro M, Filice G, Di Lorito A, Malatesta S, et al. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin Cancer Res. 2013;19(3):691–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    de Biase D, Visani M, Baccarini P, Polifemo AM, Maimone A, Fornelli A, et al. Next generation sequencing improves the accuracy of KRAS mutation analysis in endoscopic ultrasound fine needle aspiration pancreatic lesions. PLoS One. 2014;9(2):e87651.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Clark DP. Seize the opportunity: underutilization of fine-needle aspiration biopsy to inform targeted cancer therapy decisions. Cancer. 2009;117(5):289–97.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Roh MH. The utilization of Cytologic fine-needle aspirates of lung Cancer for molecular diagnostic testing. J Pathol Transl Med. 2015;49(4):300–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Boldrini L, Gisfredi S, Ursino S, Camacci T, Baldini E, Melfi F, Fontanini G. Mutational analysis in cytological specimens of advanced lung adenocarcinoma: a sensitive method for molecular diagnosis. J Thorac Oncol. 2007;2(12):1086–90.CrossRefGoogle Scholar
  52. 52.
    Leighl NB, Rekhtman N, Biermann WA, Huang J, Mino-Kenudson M, Ramalingam SS, et al. Molecular testing for selection of patients with lung cancer for epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology guideline. J Clin Oncol. 2014;32(32):3673–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ilie MI, Bence C, Hofman V, Long-Mira E, Butori C, Bouhlel L, et al. Discrepancies between FISH and immunohistochemistry for assessment of the ALK status are associated with ALK “borderline”-positive rearrangements or a high copy number: a potential major issue for anti-ALK therapeutic strategies. Ann Oncol. 2015;26(1):238–44.CrossRefGoogle Scholar
  54. 54.
    Jurmeister P, Lenze D, Berg E, Mende S, Schäper F, Kellner U, et al. Parallel screening for ALK, MET and ROS1 alterations in non-small cell lung cancer with implications for daily routine testing. Lung Cancer. 2015;87(2):122–9.CrossRefGoogle Scholar
  55. 55.
    McLeer-Florin A, Moro-Sibilot D, Melis A, Salameire D, Lefebvre C, Ceccaldi F, et al. Dual IHC and FISH testing for ALK gene rearrangement in lung adenocarcinomas in a routine practice: a French study. J Thorac Oncol. 2012;7(2):348–54.CrossRefGoogle Scholar
  56. 56.
    Park HS, Lee JK, Kim DW, Kulig K, Kim TM, Lee SH, et al. Immunohistochemical screening for anaplastic lymphoma kinase (ALK) rearrangement in advanced non-small cell lung cancer patients. Lung Cancer. 2012;77(2):288–92.CrossRefGoogle Scholar
  57. 57.
    Minca EC, Portier BP, Wang Z, Lanigan C, Farver CF, Feng Y, et al. ALK status testing in non-small cell lung carcinoma: correlation between ultrasensitive IHC and FISH. J Mol Diagn. 2013;15(3):341–6.CrossRefGoogle Scholar
  58. 58.
    To KF, Tong JH, Yeung KS, Lung RW, Law PP, Chau SL, et al. Detection of ALK rearrangement by immunohistochemistry in lung adenocarcinoma and the identification of a novel EML4-ALK variant. J Thorac Oncol. 2013;8(7):883–91.CrossRefGoogle Scholar
  59. 59.
    Blackhall FH, Peters S, Bubendorf L, Dafni U, Kerr KM, Hager H, et al. Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European thoracic oncology platform Lungscape project. J Clin Oncol. 2014;32(25):2780–7.CrossRefGoogle Scholar
  60. 60.
    Conde E, Suárez-Gauthier A, Benito A, Garrido P, García-Campelo R, Biscuola M, et al. Accurate identification of ALK positive lung carcinoma patients: novel FDA-cleared automated fluorescence in situ hybridization scanning system and ultrasensitive immunohistochemistry. PLoS One. 2014;9(9):e107200.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Cutz JC, Craddock KJ, Torlakovic E, Brandao G, Carter RF, Bigras G, et al. Canadian anaplastic lymphoma kinase study: a model for multicenter standardization and optimization of ALK testing in lung cancer. J Thorac Oncol. 2014;9(9):1255–63.CrossRefGoogle Scholar
  62. 62.
    Tantraworasin A, Lertprasertsuke N, Kongkarnka S, Euathrongchit J, Wannasopha Y, Saeteng S. Retrospective study of ALK rearrangement and clinicopathological implications in completely resected non-small cell lung cancer patients in northern Thailand: role of screening with D5F3 antibodies. Asian Pac J Cancer Prev. 2014;15(7):3057–63.CrossRefGoogle Scholar
  63. 63.
    Wang J, Cai Y, Dong Y, Nong J, Zhou L, Liu G, et al. Clinical characteristics and outcomes of patients with primary lung adenocarcinoma harboring ALK rearrangements detected by FISH, IHC, and RT-PCR. PLoS One. 2014;9(7):e101551.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yang P, Kulig K, Boland JM, Erickson-Johnson MR, Oliveira AM, Wampfler J, et al. Worse disease-free survival in never-smokers with ALK+ lung adenocarcinoma. J Thorac Oncol. 2012;7(1):90–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ying J, Guo L, Qiu T, Shan L, Ling Y, Liu X, Lu N. Diagnostic value of a novel fully automated immunochemistry assay for detection of ALK rearrangement in primary lung adenocarcinoma. Ann Oncol. 2013;24(10):2589–93.CrossRefGoogle Scholar
  66. 66.
    Shan L, Lian F, Guo L, Yang X, Ying J, Lin D. Combination of conventional immunohistochemistry and qRT-PCR to detect ALK rearrangement. Diagn Pathol. 2014;9:3.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zwaenepoel K, Van Dongen A, Lambin S, Weyn C, Pauwels P. Detection of ALK expression in non-small-cell lung cancer with ALK gene rearrangements—comparison of multiple immunohistochemical methods. Histopathology. 2014;65(4):539–48.CrossRefGoogle Scholar
  68. 68.
    Gruber K, Kohlhäufl M, Friedel G, Ott G, Kalla C. A novel, highly sensitive ALK antibody 1A4 facilitates effective screening for ALK rearrangements in lung adenocarcinomas by standard immunohistochemistry. J Thorac Oncol. 2015;10(4):713–6.CrossRefGoogle Scholar
  69. 69.
    Lantuejoul S, Rouquette I, Blons H, Le Stang N. Ilie 5, Begueret H, et al. French multicentric validation of ALK rearrangement diagnostic in 547 lung adenocarcinomas. Eur Respir J. 2015;46(1):201–18.CrossRefGoogle Scholar
  70. 70.
    Savic S, Diebold J, Zimmermann AK, Jochum W, Baschiera B, Grieshaber S, et al. Screening for ALK in non-small cell lung carcinomas: 5A4 and D5F3 antibodies perform equally well, but combined use with FISH is recommended. Lung Cancer. 2015;89(2):104–9.CrossRefGoogle Scholar
  71. 71.
    Alì G, Proietti A, Pelliccioni S, Niccoli C, Lupi C, Sensi E, et al. ALK rearrangement in a large series of consecutive non-small cell lung cancers: comparison between a new immunohistochemical approach and fluorescence in situ hybridization for the screening of patients eligible for crizotinib treatment. Arch Pathol Lab Med. 2014;138(11):1449–58.CrossRefGoogle Scholar
  72. 72.
    Marchetti A, Di Lorito A, Pace MV, Iezzi M, Felicioni L, D'Antuono T, et al. ALK protein analysis by IHC staining after recent regulatory changes: a comparison of two widely used approaches, revision of the literature, and a new testing algorithm. J Thorac Oncol. 2016;11(4):487–95.CrossRefGoogle Scholar
  73. 73.
    Drilon A, Wang L, Arcila ME, Balasubramanian S, Greenbowe JR, Ross JS, et al. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin Cancer Res. 2015;21(16):3631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Pekar-Zlotin M, Hirsch FR, Soussan-Gutman L, Ilouze M, Dvir A, Boyle T, et al. Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML4-ALK rearrangement in lung cancer. Oncologist. 2015;20(3):316–22.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dacic S, Villaruz LC, Abberbock S, Mahaffey A, Incharoen P, Nikiforova MN. ALK FISH patterns and the detection of ALK fusions by next generation sequencing in lung adenocarcinoma. Oncotarget. 2016;7(50):82943–52.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Stewart EL, Tan SZ, Liu G, Tsao MS. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res. 2015;4(1):67–81.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Huang D, Kim DW, Kotsakis A, Deng S, Lira P, Ho SN, et al. Multiplexed deep sequencing analysis of ALK kinase domain identifies resistance mutations in relapsed patients following crizotinib treatment. Genomics. 2013;102(3):157–62.CrossRefGoogle Scholar
  78. 78.
    Mao C, Qiu LX, Liao RY, Du FB, Ding H, Yang WC, et al. KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung Cancer. 2010;69(3):272–8.CrossRefGoogle Scholar
  79. 79.
    Yeung SF, Tong JHM, Law PPW, Chung LY, Lung RWM, Tong CYK, et al. Profiling of oncogenic driver events in lung adenocarcinoma revealed MET mutation as independent prognostic factor. J Thorac Oncol. 2015;10(9):1292–300.CrossRefGoogle Scholar
  80. 80.
    Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008;14(18):5731–4.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Li S, Li L, Zhu Y, Huang C, Qin Y, Liu H, et al. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. Br J Cancer. 2014;110(11):2812–20.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8.CrossRefGoogle Scholar
  83. 83.
    Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15(4):415–53.CrossRefGoogle Scholar
  84. 84.
    Riely GJ, Ladanyi M. KRAS mutations: an old oncogene becomes a new predictive biomarker. J Mol Diagn. 2008;10(6):493–5.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Slebos RJ, Kibbelaar RE, Dalesio O, Kooistra A, Stam J, Meijer CJ, et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med. 1990;323(9):561–5.CrossRefGoogle Scholar
  86. 86.
    Tsao MS, Aviel-Ronen S, Ding K, Lau D, Liu N, Sakurada A, et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol. 2007;25(33):5240–7.CrossRefGoogle Scholar
  87. 87.
    Mitsudomi T, Steinberg SM, Oie HK, Mulshine JL, Phelps R, Viallet J, et al. Ras gene mutations in non-small cell lung cancers are associated with shortened survival irrespective of treatment intent. Cancer Res. 1991;51(18):4999–5002.Google Scholar
  88. 88.
    Jänne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 2013;14(1):38–47.CrossRefGoogle Scholar
  89. 89.
    Jänne PA, van den Heuvel MM, Barlesi F, Cobo M, Mazieres J, Crinò L, et al. Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: the SELECT-1 randomized clinical trial. J Am Med Assoc. 2017;317(18):1844–53.CrossRefGoogle Scholar
  90. 90.
    Carter CA, Rajan A, Keen C, Szabo E, Khozin S, Thomas A, et al. Selumetinib with and without erlotinib in KRAS mutant and KRAS wild-type advanced nonsmall-cell lung cancer. Ann Oncol. 2016;27(4):693–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Cai W, Li X, Su C, Fan L, Zheng L, Fei K, et al. ROS1 fusions in Chinese patients with non-small-cell lung cancer. Ann Oncol. 2013;24(7):1822–7.CrossRefGoogle Scholar
  93. 93.
    Chen YF, Hsieh MS, Wu SG, Chang YL, Shih JY, Liu YN, et al. Clinical and the prognostic characteristics of lung adenocarcinoma patients with ROS1 fusion in comparison with other driver mutations in east Asian populations. J Thorac Oncol. 2014;9(8):1171–9.CrossRefGoogle Scholar
  94. 94.
    Go H, Kim DW, Kim D, Keam B, Kim TM, Lee SH, et al. Clinicopathologic analysis of ROS1-rearranged non-small-cell lung cancer and proposal of a diagnostic algorithm. J Thorac Oncol. 2013;8(11):1445–50.CrossRefGoogle Scholar
  95. 95.
    Lee SE, Lee B, Hong M, Song JY, Jung K, Lira ME, et al. Comprehensive analysis of RET and ROS1 rearrangement in lung adenocarcinoma. Mod Pathol. 2015;28(4):468–79.CrossRefGoogle Scholar
  96. 96.
    Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    US Food and Drug Administration. XALKORI prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/202570s016lbl.pdf. Accessed 13 June 2018.
  98. 98.
    McCoach CE, Le AT, Gowan K, Jones K, Schubert L, Doak A, et al. Resistance mechanisms to targeted therapies in ROS1+ and ALK+ non-small cell lung Cancer. Clin Cancer Res. 2018;24:3334.CrossRefGoogle Scholar
  99. 99.
    Cha YJ, Lee JS, Kim HR, Lim SM, Cho BC, Lee CY, Shim HS. Screening of ROS1 rearrangements in lung adenocarcinoma by immunohistochemistry and comparison with ALK rearrangements. PLoS One. 2014;9(7):e103333.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mescam-Mancini L, Lantuéjoul S, Moro-Sibilot D, Rouquette I, Souquet PJ, Audigier-Valette C, et al. On the relevance of a testing algorithm for the detection of ROS1-rearranged lung adenocarcinomas. Lung Cancer. 2014;83(2):168–73.CrossRefGoogle Scholar
  101. 101.
    Sholl LM, Sun H, Butaney M, Zhang C, Lee C, Jänne PA, Rodig SJ. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol. 2013;37(9):1441–9.CrossRefGoogle Scholar
  102. 102.
    Yoshida A, Tsuta K, Wakai S, Arai Y, Asamura H, Shibata T, et al. Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol. 2014;27(5):711–20.CrossRefGoogle Scholar
  103. 103.
    Boyle TA, Masago K, Ellison KE, Yatabe Y, Hirsch FR. ROS1 immunohistochemistry among major genotypes of non-small-cell lung cancer. Clin Lung Cancer. 2015;16(2):106–11.CrossRefGoogle Scholar
  104. 104.
    Shan L, Lian F, Guo L, Qiu T, Ling Y, Ying J, Lin D. Detection of ROS1 gene rearrangement in lung adenocarcinoma: comparison of IHC, FISH and real-time RT-PCR. PLoS One. 2015;10(3):e0120422.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Su J, Zhang XC, An SJ, Zhong WZ, Huang Y, Chen SL, et al. Detecting the spectrum of multigene mutations in non-small cell lung cancer by snapshot assay. Chin J Cancer. 2014;33(7):346–50.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Han JY, Kim SH, Lee YS, et al. Comparison of targeted next-generation sequencing with conventional sequencing for predicting the responsiveness to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy in never-smokers with lung adenocarcinoma. Lung Cancer. 2014;85:161–7.CrossRefGoogle Scholar
  107. 107.
    Tuononen K, Mäki-Nevala S, Sarhadi VK, Wirtanen A, Rönty M, Salmenkivi K, et al. Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma—superiority of NGS. Genes Chromosom Cancer. 2013;52(5):503–11.CrossRefGoogle Scholar
  108. 108.
    Endris V, Penzel R, Warth A, Muckenhuber A, Schirmacher P, Stenzinger A, Weichert W. Molecular diagnostic profiling of lung cancer specimens with a semiconductor-based massive parallel sequencing approach: feasibility, costs, and performance compared with conventional sequencing. J Mol Diagn. 2013;15(6):765–75.CrossRefGoogle Scholar
  109. 109.
    Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P. Library construction for next-generation sequencing: overviews and challenges. BioTechniques. 2014;56(2):61–77.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    KEYTRUDA [package insert], Merck & Co, Inc, Whitehouse Station, NJ. 2014.Google Scholar
  111. 111.
    OPDIVO [package insert], Bristol-Myers Squibb Company, Princeton, NJ. 2015.Google Scholar
  112. 112.
    TECENTRIQ [package insert], Genentech, Inc, South San Francisco, CA. 2016.Google Scholar
  113. 113.
    Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol. 2018;4(2):210–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pathology, Division of Pathology/Lab MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Genomic Medicine Program, Department of Pathology and Laboratory MedicineUniversity of Vermont Health Network, Larner College of Medicine at the University of VermontBurlingtonUSA

Personalised recommendations