Category V: Suspicious for Malignancy



The category “suspicious for malignancy” is a bridging category included in the Papanicolaou Society of Cytopathology guidelines for respiratory cytology. The category is useful to retain the high diagnostic specificity of the category “malignant” while still communicating to the treating clinician the cytopathologist’s high suspicion for the presence of a malignancy. The malignancy risk of the “suspicious for malignancy” category lies between that of the “atypical” and the fully “malignant” categories. This stratification allows the physician managing the patient to assess the degree of certainty that a cytopathologist has as to whether or not a malignancy is present. The category allows considerable discretion on the part of the treating physician to manage his or her patient most appropriately. Patients whose cytology specimen is designated “suspicious for malignancy” should be presented at a multidisciplinary conference where results of clinical findings, imaging studies, and the cytopathology diagnosis are correlated and optimal follow-up determined.


Suspicious for malignancy Intermediate category Malignancy risk Respiratory cytology Ambiguous terminology 


  1. 1.
    Layfield LJ, Baloch Z, Elsheikh T, Litzky L, Rekhtman N, Travis WD, Zakowski M, Zarka M, Geisinger K. Standardized terminology and nomenclature for respiratory cytology: the Papanicolaou Society of Cytopathology guidelines. Diagn Cytopathol. 2016;44(5):399–409.CrossRefGoogle Scholar
  2. 2.
    Layfield LJ, Dodd L, Witt B. Malignancy risk for the categories: non-diagnostic, benign, atypical, suspicious, and malignant used in the categorization of endobronchial ultrasound guided-fine needle aspirates of pulmonary nodules. Diagn Cytopathol. 2015;43(11):892–6.CrossRefGoogle Scholar
  3. 3.
    Ali SZ, Cibas ES (eds). The Bethesda system for reporting thyroid cytopathology. Definitions, criteria, and explanatory notes. Cham: Springer International Publishing; 2018. p. 2.Google Scholar
  4. 4.
    Pitman MB, Layfield LJ (eds). The Papanicolaou Society of Cytopathology System for reporting pancreaticobiliary cytology. Cham: Springer International Publishing; 2015. p. 2–3.Google Scholar
  5. 5.
    Lee JG, Leung JW, Baillie J, Layfield LJ, Cotton PB. Benign, dysplastic, or malignant–making sense of endoscopic bile duct brush cytology: results in 149 consecutive patients. Am J Gastroenterol. 1995;90(5):722–6.Google Scholar
  6. 6.
    Ali SZ, Yang CH. Lung and mediastinum Cytohistology. Cambridge: Cambridge University Press; 2012. p. 100–87.CrossRefGoogle Scholar
  7. 7.
    Orell SR, Sterrett GF. Fine needle aspiration cytology. 5th ed. Edinburgh: Churchill Livingstone/Elsevier; 2012. p. 220–34.Google Scholar
  8. 8.
    Zhai J. Fine-needle aspiration of lung, pleura, and mediastinum. In: Gattuso P, Reddy VB, Masood S, editors. Differential diagnosis in cytopathology. 2nd ed. Cambridge: Cambridge University Press; 2015. p. 439–52.Google Scholar
  9. 9.
    Steffee CH, Segletes LA, Geisinger KR. Changing cytologic and histologic utilization patterns in the diagnosis of 515 primary lung malignancies. Cancer. 1997;81:105–15.CrossRefGoogle Scholar
  10. 10.
    Crapanzano JP, Loukeris K, Borczuk AC, Saqi A. Cytological, histological, and immunohistochemical findings of pulmonary carcinomas with basaloid features. Diagn Cytopathol. 2011;39:92–100.CrossRefGoogle Scholar
  11. 11.
    Alasio TM, Sun W, Yang GCH. Giant cell carcinoma of the lung: impact of diagnosis and review of cytologic features. Diagn Cytopathol. 2007;35:555–9.CrossRefGoogle Scholar
  12. 12.
    Anderson C, Ludwig ME, O'Donnell M, et al. Fine needle aspiration cytology of pulmonary carcinoid tumors. Acta Cytol. 1990;34(4):505–10.PubMedPubMedCentralGoogle Scholar
  13. 13.
    French CA. Respiratory tract. In: Cibas ES, Ducatman BS, editors. Cytology: diagnostic principles and clinical correlates. 2nd ed. Edinburgh: Saunders; 2003. p. 61–95.Google Scholar
  14. 14.
    Frierson HF Jr, Covell JL, Mills S. Needle aspiration cytology of atypical carcinoid of the lung. Acta Cytol. 1987;31:471–5.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Jordan AG, Predmore I, Sullivan MM, Memoli VA. The cytodiagnosis of well differentiated neuroendocrine carcinoma. Acta Cytol. 1987;31:464–70.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kakinuma H, Mikami T, Iwabuchi K, et al. Diagnostic findings of bronchial brush cytology for pulmonary large cell neuroendocrine carcinomas: comparison with poorly differentiated adenocarcinomas, squamous cell carcinomas, and small cell carcinomas. Cancer (Cancer Cytopathol). 2003;99:247–54.CrossRefGoogle Scholar
  17. 17.
    Nguyen GK. Cytopathology of pulmonary carcinoid tumors in sputum and bronchial brushings. Acta Cytol. 1995;39(6):1152–60.Google Scholar
  18. 18.
    Yang YJ, Steele CT, Ou XL, et al. Diagnosis of high-grade pulmonary neuroendocrine carcinoma by fine-needle aspiration biopsy: nonsmall-cell or small-cell type? Diagn Cytopathol. 2001;25:292–300.CrossRefGoogle Scholar
  19. 19.
    Wiatrowska BA, Krol J, Zakowski MF. Large-cell neuroendocrine carcinoma of the lung: proposed criteria for cytologic diagnosis. Diagn Cytopathol. 2001;24:58–64.CrossRefGoogle Scholar
  20. 20.
    Silverman JF, Finley JL, Park HK, et al. Fine needle aspiration cytology of bronchioloalveolar cell carcinoma of the lung. Acta Cytol. 1985;29:887–94.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Tao LC, Weisbrod GL, Pearson FG, et al. Cytologic diagnosis of bronchioloalveolar carcinoma by fine needle aspiration biopsy. Cancer. 1986;57:1565–70.CrossRefGoogle Scholar
  22. 22.
    Mooney EE, Dodd LG, Vollmer RT, et al. Fine needle aspiration biopsy diagnosis of primary bronchial basaloid squamous carcinoma. Diagn Cytopathol. 1997;16:187–8.CrossRefGoogle Scholar
  23. 23.
    Brooks B, Baandrup U. Peripheral low grade mucoepidermoid carcinoma of the lung – needle aspiration cytodiagnosis and histology. Cytopathology. 1992;3:259–65.CrossRefGoogle Scholar
  24. 24.
    Finley JL, Silverman JF, Dabbs DJ. Fine needle aspiration cytology of pulmonary carcinosarcoma with immunocytochemical and ultrastructural observations. Diagn Cytopathol. 1988;14:239–43.CrossRefGoogle Scholar
  25. 25.
    Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors. J Thorac Oncol. 2015;10(9):1243–60.CrossRefGoogle Scholar
  26. 26.
    Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244–85.CrossRefGoogle Scholar
  27. 27.
    Tournoy KG, Carprieaux M, Deschepper E, Van Meerbeeck JP, Praet M. Are EUS–FNA and EBUS–TBNA specimens reliable for subtyping non-small cell lung cancer? Lung Cancer. 2011;76:46–50.CrossRefGoogle Scholar
  28. 28.
    Warth A, Muley T, Herpel E, et al. Large-scale comparative analyses of immunomarkers for diagnostic subtyping of non-small-cell lung cancer biopsies. Histopathology. 2012;61(6):1017–25.CrossRefGoogle Scholar
  29. 29.
    Koh J, Go H, Kim M-Y, Jeon YK, Chung J-H, Chung DH. A comprehensive immunohistochemistry algorithm for the histological subtyping of small biopsies obtained from non-small cell lung cancers. Histopathology. 2014;65(6):868–78.CrossRefGoogle Scholar
  30. 30.
    da Cunha Santos G, Lai SW, Saieg MA, et al. Cyto-histologic agreement in pathologic subtyping of non small cell lung carcinoma: review of 602 fine needle aspirates with follow-up surgical specimens over a nine year period and analysis of factors underlying failure to subtype. Lung Cancer. 2012;77:501–6.CrossRefGoogle Scholar
  31. 31.
    Vandermeer R, Chambers S, Van Dam BA, Cutz JC, Goffin JR, Ellis PM. Diagnosing lung cancer in the 21st century: are we ready to meet the challenge of individualized care? Curr Oncol. 2015;22(4):272–8.CrossRefGoogle Scholar
  32. 32.
    Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol. 2013;31(8):992–1001.CrossRefGoogle Scholar
  33. 33.
    Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJCK. Cancer statistics review, 1975–2014 – SEER Statistics. SEER Cancer Stat Rev 1975–2014, Natl Cancer Institute Bethesda, MD. 2016. Accessed 6 Dec 2017.
  34. 34.
    Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(4):504–35.CrossRefGoogle Scholar
  35. 35.
    Ettinger DS, Wood DE, Akerley W, et al. Non-small cell lung cancer, featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2015;13(5):515–24.CrossRefGoogle Scholar
  36. 36.
    Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 SUPPL).Google Scholar
  37. 37.
    Silvestri GA, Gonzalez AV, Jantz MA, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 SUPPL):e211S–50S.CrossRefGoogle Scholar
  38. 38.
    Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest. 2017;151(1):193–203.CrossRefGoogle Scholar
  39. 39.
    Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11(1):39–51.CrossRefGoogle Scholar
  40. 40.
    Rooper LM, Nikolskaia O, Carter J, Ning Y, Lin MT, Maleki Z. A single EBUS-TBNA procedure can support a large panel of immunohistochemical stains, specific diagnostic subtyping, and multiple gene analyses in the majority of non-small cell lung cancer cases. Hum Pathol. 2016;51:139–45.CrossRefGoogle Scholar
  41. 41.
    Sakakibara R, Inamura K, Tambo Y, et al. EBUS-TBNA as a promising method for the evaluation of tumor PD-L1 expression in lung cancer. Clin Lung Cancer. 2016;18(5):3–8.Google Scholar
  42. 42.
    Karnes HE, Duncavage EJ, Bernadt CT. Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung. Cancer Cytopathol. 2014;122(2):104–13.CrossRefGoogle Scholar
  43. 43.
    Biswas A, Leon ME, Drew P, et al. Clinical performance of endobronchial ultrasound-guided transbronchial needle aspiration for assessing programmed death ligand-1 expression in nonsmall cell lung cancer. Diagn Cytopathol. 2018;46(5):378–83.CrossRefGoogle Scholar
  44. 44.
    Rossi A, Maione P, Bareschino MA, et al. The emerging role of histology in the choice of first-line treatment of advanced non-small cell lung cancer: implication in the clinical decision-making. Curr Med Chem. 2010;17(11):1030–8. Scholar
  45. 45.
    Kerr KM. Personalized medicine for lung cancer: new challenges for pathology. Histopathology. 2012;60(4):531–46.CrossRefGoogle Scholar
  46. 46.
    Cooper WA, O’Toole S, Boyer M, Horvath L, Mahar A. What’s new in non-small cell lung cancer for pathologists: the importance of accurate subtyping, EGFR mutations and ALK rearrangements. Pathology. 2011;43(2):103–15.CrossRefGoogle Scholar
  47. 47.
    Sos ML, Thomas RK. Genetic insight and therapeutic targets in squamous-cell lung cancer. Oncogene. 2012;31(46):4811–4.CrossRefGoogle Scholar
  48. 48.
    Pelosi G, Scarpa A, Forest F, Sonzogni A. The impact of immunohistochemistry on the classification of lung tumors. Expert Rev Respir Med. 2016;10(10):1105–21.CrossRefGoogle Scholar
  49. 49.
    Patel TS, Shah MG, Gandhi JS, Patel P. Accuracy of cytology in sub typing non small cell lung carcinomas. Diagn Cytopathol. 2017;45(7):598–603.CrossRefGoogle Scholar
  50. 50.
    Tanner NT, Dai L, Bade BC, Gebregziabher M, Silvestri GA. Assessing the generalizability of the National Lung Screening Trial: comparison of patients with stage 1 disease. Am J Respir Crit Care Med. 2017;196(5):602–8.CrossRefGoogle Scholar
  51. 51.
    Videtic GMM, Donington J, Giuliani M, et al. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: executive summary of an ASTRO evidence-based guideline. Pract Radiat Oncol. 2017;7(5):295–301.CrossRefGoogle Scholar
  52. 52.
    Kumar M, Choudhury Y, Ghosh SK, Mondal R. Application and optimization of minimally invasive cell-free DNA techniques in oncogenomics. Tumor Biol. 2018;40(2):101042831876034.CrossRefGoogle Scholar
  53. 53.
    Ulivi P, Silvestrini R. Role of quantitative and qualitative characteristics of free circulating DNA in the management of patients with non-small cell lung cancer. Cell Oncol. 2013;36(6):439–48.CrossRefGoogle Scholar
  54. 54.
    Pécuchet N, Zonta E, Didelot A, et al. Base-position error rate analysis of next-generation sequencing applied to circulating tumor DNA in non-small cell lung cancer: a prospective study. PLoS Med. 2016;13(12):e1002199.CrossRefGoogle Scholar
  55. 55.
    Yao Y, Liu J, Li L, et al. Detection of circulating tumor DNA in patients with advanced non-small cell lung cancer. Oncotarget. 2017;8(2):2130–40.CrossRefGoogle Scholar
  56. 56.
    Hench IB, Hench J, Tolnay M. Liquid biopsy in clinical management of breast, lung, and colorectal cancer. Front Med. 2018;5:9.CrossRefGoogle Scholar
  57. 57.
    Ge X, Guan W, Han F, Guo X, Jin Z. Comparison of endobronchial ultrasound-guided fine needle aspiration and video-assisted mediastinoscopy for mediastinal staging of lung cancer. Lung. 2015;193(5):757–66.CrossRefGoogle Scholar
  58. 58.
    Ernst A, Anantham D, Eberhardt R, Krasnik M, Herth FJF. Diagnosis of mediastinal adenopathy—real-time endobronchial ultrasound guided needle aspiration versus mediastinoscopy. J Thorac Oncol. 2008;3(6):577–82.CrossRefGoogle Scholar
  59. 59.
    Geraghty PR, Kee ST, McFarlane G, Razavi MK, Sze DY, Dake MD. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology. 2003;229(2):475–81.CrossRefGoogle Scholar
  60. 60.
    Wang W, Yu L, Wang Y, et al. Radial EBUS versus CT-guided needle biopsy for evaluation of solitary pulmonary nodules. Oncotarget. 2018;9(19):15122–31.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Herth FJF, Annema JT, Eberhardt R, et al. Endobronchial ultrasound with transbronchial needle aspiration for restaging the mediastinum in lung cancer. J Clin Oncol. 2008;26(20):3346–50.CrossRefGoogle Scholar
  62. 62.
    Nasir BS, Bryant AS, Minnich DJ, Wei B, Dransfield MT, Cerfolio RJ. The efficacy of restaging endobronchial ultrasound in patients with non-small cell lung cancer after preoperative therapy. Ann Thorac Surg. 2014;98(3):1008–12.CrossRefGoogle Scholar
  63. 63.
    Hirji SA, Osho A, Balderson SS, D’Amico TA. Thoracoscopic lobectomy after induction therapy-a paradigm shift? J Vis Surg. 2017;3:189.CrossRefGoogle Scholar
  64. 64.
    Paweletz CP, Sacher AG, Raymond CK, et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung Cancer patients. Clin Cancer Res. 2016;22(4):915–22.CrossRefGoogle Scholar
  65. 65.
    Oxnard GR, Thress KS, Alden RS, et al. Association between plasma genotyping and outcomes of treatment with Osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(28):3375–82.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cytopathology Department of Pathology and Laboratory MedicineUniversity of North Carolina Chapel HillChapel HillUSA
  2. 2.Medicine – Division of Pulmonary and Critical Care MedicineUniversity of North Carolina Chapel HillChapel HillUSA

Personalised recommendations