Advertisement

Genetic Resources of Capsicum

  • Derek W. Barchenger
  • Ponnam Naresh
  • Sanjeet KumarEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Peppers belong to the genus Capsicum of the Solanaceae family and represent plants producing fruits with variable degrees of pungency (highly pungent to nonpungent). Peppers are native to the tropical and temperate Americas. Capsaicinoids (the secondary metabolite responsible for pungency) are uniquely produced in the genus Capsicum, which consists of approximately 35 species. There are five widely domesticated and cultivated species (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens). The wild progenitor C. annuum var. glabriusculum chili pepper (chiltepin) typically has small-round, erect, highly pungent, deciduous, and soft-fleshed fruits. Capsicum genetic resources have been successfully used in modern plant breeding programs to develop and commercialize sweet and hot pepper cultivars with diverse market types. Primarily these include breeding for abiotic and biotic stresses and speciality traits for industrial extraction. However, unlike the closely related tomato, the use of wild Capsicum germplasm in pepper improvement programs is extremely limited. There are currently no wild Capsicum species listed as vulnerable, threatened, or endangered by the US Endangered Species Act. However, this is likely inaccurate as tropical rainforest is being used for agriculture and other forms of habitat modification, resulting in the natural habitat of wild Capsicum germplasm being lost. The genetic resources against biotic stresses have the potential to be depleted, due to the rapid evolution of new pathotypes. Therefore, the search for new resistance source against specific pathogens and their deployment in commercial cultivars is a continuous process. Ensuring alignment of national and international policy regulations is needed so that unique Capsicum genetic resources are able to be collected, conserved, and distributed, which is critical to the overall success of ex situ conservation.

Keywords

Abiotic stress Biotic stress Chili pepper Domestication syndrome In situ and ex situ conservation   Sweet pepper 

References

  1. Adluri P, Baldoldiya GM, Nath P (2017) Screening of Bhut Jolokia (Capsicum chinense Jacq.) germplasm of North East India against chili leaf curl virus. Int J Pure Appl Biosci 5:1189–1196CrossRefGoogle Scholar
  2. Aloni B, Karni L, Daie J (1992) Effect of heat stress on the growth, root sugars, acid invertase and protein profile of pepper seedlings following transplanting. J Hort Sci 67:717–725CrossRefGoogle Scholar
  3. Anaya-Lopez JL, Torres-Pacheco I, Gonzalez-Chavira M, Garzon-Tiznado JA, Pons-Hernandez JL, Guevara-Gonzalez RG et al (2003) Resistance to geminivirus mixed infections in Mexican wild peppers. HortScience 38:251–255CrossRefGoogle Scholar
  4. Bakker JC, Van Uffelen JAM (1988) The effects of diurnal temperature regime on growth and yield of glasshouse sweet pepper. Neth J Agric Sci 36:201–208Google Scholar
  5. Balasankar D, Praneetha S, Arumugam T, Jeyakumar P, Manivannan N, Arulmozhiselvan K (2017) Genotypic response of chilli (Capsicum annuum L.) on germination and seedling characters to different salinity levels. Int J Curr Microbiol Appl Sci 6:2197–2205CrossRefGoogle Scholar
  6. Barchenger DW, Bosland PW (2019) Wild chile pepper (Capsicum sp.) of North America. In: Greene S, Williams K, Khoury CK, Kantar MB, Marek L (eds) North American Crop Wild Relatives vol II. Springer International Publishing, New York, NY (in press)Google Scholar
  7. Barchenger DW, Sheu ZM, Kumar S, Lin SW, Burlakoti R, Bosland PW (2018a) Race characterization of Phytophthora root rot on Capsicum in Taiwan as a basis for anticipatory resistance breeding. Phytopathology 108:964–971CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barchenger DW, Lamour KL, Bosland PW (2018b) Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Front Plant Sci 9:628.  https://doi.org/10.3389/fpls.2018.00628CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boiteux LS, Nagata T, Dutra WP, Fonseca MEN (1993) Sources of resistance to tomato spotted wilt virus (TSWV) in cultivated and wild species of Capsicum. Euphytica 67:89–94CrossRefGoogle Scholar
  10. Borah DC (1987) Bioecology of Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) and Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) infesting chilli and their natural enemies. Ph.D. thesis submitted to the University of Agricultural Sciences, Dharwad, Karnataka, India, p 330Google Scholar
  11. Bosland P, Baral JB (2007) ‘Bhut Jolokia’—the world’s hottest known chile pepper is a putative naturally occurring inter specific hybrid. HortScience 42:222–224CrossRefGoogle Scholar
  12. Bosland PW, Coon D, Reeves G (2012) ‘Trinidad Moruga Scorpion’ pepper is the world’s hottest measured chile pepper at more than two million scoville heat units. HortTechnology 22:535–538Google Scholar
  13. Bosland PW, Votava EJ (2012) Peppers, vegetable and spice capsicum, 2nd edn. CABI, Wallingford, UKCrossRefGoogle Scholar
  14. Caranta C, Pxieg ES, Lefebvre V, Daubeze AM, Thabuis A, Palloix A (2002) QTLs involved in the restriction of Cucumber mosaic virus (CMV) long-distance movement in pepper. Theor Appl Genet 104:586–591CrossRefPubMedPubMedCentralGoogle Scholar
  15. Caranta C, Thabuis A, Palloix A (1999) Development of a CAPS marker for the Pvr4 locus: a tool for pyramiding potyvirus resistance genes in pepper. Genome 42:1111–1116CrossRefGoogle Scholar
  16. Carrizo Garcia C, Barfuss Michael HJ, Sehr EM, Barboza GE, Samuel R, Moscone AE, Ehrendorfer F (2016) Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann Bot 118:35–51CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cebolla-Cornejo J, Soler S, Gomar B, Soria F (2003) Screening Capsicum germplasm for resistance to Tomato spotted wilt virus (TSWV). Ann Appl Biol 143:143–152CrossRefGoogle Scholar
  18. Chaim BA, Grube RC, Lapidot M, Jahn M, Paran I (2001) Identification of quantitative trait loci associated with resistance to Cucumber mosaic virus in Capsicum annuum. Theor Appl Genet 102:1213–1220CrossRefGoogle Scholar
  19. Chakraborty S, Pandey PK, Banerjee MK, Kalloo G, Fauquet CM (2003) Tomato leaf curl Gujarat virus: a new Begomovirus species causing severe leaf curl disease of tomato in Varanasi, India. Phytopathology 93:1485–1495CrossRefPubMedPubMedCentralGoogle Scholar
  20. Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fazari A, Palloix A, Wang LH, Hua MY, Sage-Palloix AM, Zhang BX, Djian-Caporalino C (2012) The root-knot nematode resistance N-gene co-localizes in the Me-genes cluster on the pepper (Capsicum annuum L.) P9 chromosome. Plant Breed 131:665–673CrossRefGoogle Scholar
  22. Feng YL, Jiang SM (2000) Effect of root system temperature on physiological characteristics of thick red pepper (Capsicum annuum var. grossum). Plant Physiol Commun 36:308–311Google Scholar
  23. Gajanayake B, Trader BW, Raja Reddy K, Harkess RL (2011) Screening ornamental pepper cultivars for temperature tolerance using pollen and physiological Parameters. HortScience 46:878–884CrossRefGoogle Scholar
  24. Garcia-Neria MA, Rivera-Bustamante RF (2011) Characterization of Geminivirus resistance in an accession of Capsicum chinense Jacq. Mol Plant-Microbe Inter 24:172–182CrossRefGoogle Scholar
  25. Gepts P (2014) The contribution of genetic and genomic approaches to plant domestication. Curr Opin Plant Biol 18:51–59CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gniffke PA, Shieh SC, Lin SW, Sheu ZM, Chen JR, Ho FI, Tsai WS, Chou YY, Wang JF, Cho MC, Roland S, Kenyon L, Ebert AW, Srinivasan R, Kumar S (2013) Pepper research and breeding at AVRDC—the world vegetable center. In: Proceedings of XV EUCARPIA meeting on genetics and breeding of capsicum and eggplant, Turin, Italy, 2–4 September, pp 305–311Google Scholar
  27. González-Jara P, Moreno-Letelier A, Fraile A, Piñero D, García-Arenal F (2011) Impact of human management on the genetic variation of wild pepper, Capsicum annuum var. glabriusculum. PLoS One 6(12):e28715.  https://doi.org/10.1371/journal.pone.0028715CrossRefPubMedPubMedCentralGoogle Scholar
  28. Grube RC, Zhang Y, Murphy JF, Loaiza-figueroa F, Lackney VK, Provvidenti R, Jahn M (2000a) New source of resistance to Cucumber mosaic virus in Capsicum frutescens. Plant Dis 84:885–891Google Scholar
  29. Grube RC, Blauth JR, Andredos MSA, Caranta C, Jahn MK (2000b) Identification and comparative mapping of a dominant potyvirus resistance gene cluster in Capsicum. Theor Appl Genet 101:852–859Google Scholar
  30. Guo G, Wang S, Liu J, Pan B, Diao W, Ge W, Gao C, Snyder JC (2017) Rapid identification of QTLs underlying resistance to Cucumber mosaic virus in pepper (Capsicum frutescens). Theor Appl Genet 130:41–52CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hsu CC, Lin SW, Wang YW, Chan YL, Lee LM, Barchenger DW, Kenyon L, Kumar S (2018) Resistance to Tomato mosaic virus (ToMV) in sweet pepper (Capsicum annuum). Act Hort (in press)Google Scholar
  32. Hoang NH, Yang HB, Kang BC (2013) Identification and inheritance of a new source of resistance against Tomato spotted wilt virus (TSWV) in Capsicum. Sci Hort 161:8–14CrossRefGoogle Scholar
  33. Jabłońska-Sabuka M, Kalaria R, Kauranne T (2015) A dynamical model for epidemic outbursts by Begomovirus population clusters. Ecol Model 297:60–68CrossRefGoogle Scholar
  34. Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer JW (2000) Genetic mapping of the Tsw locus for resistance to the tospovirus tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant-Microbe Inter 13:673–682CrossRefGoogle Scholar
  35. Kenyon L, Kumar S, Tsai WS, Hughes J (2014) Virus diseases of peppers (Capsicum spp.) and their control. Adv Virus Res 90:293–350Google Scholar
  36. Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kang WH, Hoang NH, Yang HB, Kwon JK, Jo SH, SeoJK Kim KH, Choi D, Kang BC (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor Appl Genet 120:1587–1596CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kaur N, Dhaliwal MS, Jindal S, Singh P (2016) Evaluation of hot pepper (Capsicum annuum L.) genotypes for heat tolerance during reproductive phase. Int J Bio-Resour Stress Manage 7:126–129CrossRefGoogle Scholar
  39. Kim HJ, Nahm SH, Lee HR, Yoon GR, Kim KT, Kang BC, Kweon OC, Cho MC, Kwon JK, Han JH, Kim JH, Park M, Ahn JH, Choi SH, Her NH, Sung JH, Kim BD (2008a) BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor Appl Genet 118:15–27CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kim SH, Yoon JB, Do JW, Park HG (2008b) Inheritance of anthracnose resistance in a new genetic resource Capsicum baccatum PI594137. J Crop Sci Biotechnol 11:13–16Google Scholar
  41. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves GR, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JKC, Sorensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:470–478Google Scholar
  42. Kirada C, Topcu S, Cetin M, Dasgan HY, Kaman H, Topaloglu F, Derici MR, Ekici B (2007) Prospects of partial root zone irrigation for increasing irrigation water use efficiency of major crops in the Mediterranean region. Ann Appl Biol 150:281–291CrossRefGoogle Scholar
  43. Kumar S, Kumar R, Singh J (2006) Cayenne/American pepper (Capsicum species). In: Peter KV (ed) Handbook of herbs and spices, vol 3. Woodhead Publishing, Cambridge, UK, pp 299–312CrossRefGoogle Scholar
  44. Kumar S, Shieh HC, Lin SW, Schafleitner R, Kenyon L, Srinivasan R, Wang JF, Ebert AW, Chou YY (2018) Peppers (Capsicum spp.): domestication and breeding for global use. In: Mandal D, Shukla AC, Siddiqui MW (eds) Sustainable horticulture, vol 1: diversity, production, and crop improvement, Part III. Crop improvement and biotechnology. Apple Academic/CRC Press, Waretown, NJ, USA, pp 387–400Google Scholar
  45. Lapidot M, Paran I, Ben-joseph R, Ben-harush S, Pilowsky M, Cohen S, Shifriss C (1997) Tolerance to Cucumber mosaic virus in pepper: development of advanced breeding lines and evaluation of virus level. Plant Dis 81:185–188CrossRefGoogle Scholar
  46. Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, Dintinger J, Chiroleu F, Wicker E, Prior P (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154–165CrossRefGoogle Scholar
  47. Lee J, Hong JH, Do JW, Yoon JB (2010) Identification of QTLs for resistance to anthracnose to two Colletotrichum species in pepper. J Crop Sci Biotechnol 13:227–233CrossRefGoogle Scholar
  48. Lee HR, Jung H, Gon Y, Lee J, Kim HJ, Kang BC, Harn CH (2013) Development of a novel codominant molecular marker for chilli veinal mottle virus resistance in Capsicum annuum L. Euphytica 193:197–205CrossRefGoogle Scholar
  49. Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTL are involved in polygenic induced resistance to disease: a case study, the interaction pepper–Phytophthora capsici Leonian. TheorAppl Genet 93:503–511CrossRefGoogle Scholar
  50. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529.  https://doi.org/10.1038/nature16467
  51. Levey DJ, Tewksbury JJ, Cipollini ML, Carlo TA (2006) Field test of the directed deterrence hypothesis in two species of wild chili. Oecologia 150:61–68CrossRefGoogle Scholar
  52. Lin SW, Gniffke PA, Wang TC (2007) Inheritance of resistance to pepper anthracnose by Colletotrichum acutatum. Acta Hort 760:329–334CrossRefGoogle Scholar
  53. Linders EGA, Nicolet JLME, Van Wijk HJ (2010) Insect resistant plant, vol. PCT/EP2008/055374: Syngenta Participations AG United StatesGoogle Scholar
  54. Lopes CA, Boiteux LS (2004) Biovar specific and broad spectrum sources of resistance to bacterial wilt (Ralstonia solanacearum) in Capsicum. Crop Breed Appl Biot 4:350–355CrossRefGoogle Scholar
  55. Luna-Ruiz de J, Nabhan GP, Aguilar-Melendez A (2018) Shifts in plant chemical defenses of chile pepper (Capsicum annuum L.) due to domestication in Mesoamerica. Front Ecol Evol 6:48.  https://doi.org/10.3389/fevo.2018.00048
  56. Maharijaya A, Vosman B, Steenhuis-Broers G, Harpenas A, Purwito A, Visser RGF, Voorrips RE (2011) Screening of pepper accessions for resistance against two thrips species (Frankliniella occidentalis and Thrips parvispinus). Euphytica 177:401–410CrossRefGoogle Scholar
  57. Maharijaya A, Vosman B, Steenhuis-Broers G, Pelgrom K, Purwito A, Visser RGF, Voorrips RE (2015) QTL mapping of thrips resistance in pepper. Theor Appl Genet 128:1945–1956CrossRefPubMedPubMedCentralGoogle Scholar
  58. Maharijaya A, Vosman B, Verstappen F, Steenhuis-Broers G, Mumm R, Purwito A, Visser RG, Voorrips RE (2012) Resistance factors in pepper inhibit larval development of thrips (Frankliniella occidentalis). Entomol Exp Appl 145:62–71CrossRefGoogle Scholar
  59. Mahasuk P, Struss D, Mongkolporn O (2016) QTLs for resistance to anthracnose identified in two Capsicum sources. Mol Breed 36:10.  https://doi.org/10.1007/s11032-016-0435-5CrossRefGoogle Scholar
  60. Mahasuk P, Taylor PWJ, Mongkolporn O (2009) Identification of two new genes conferring resistance to Colletotrichum acutatum in Capsicum baccatum. Phytopathology 99:1100–1104CrossRefGoogle Scholar
  61. Mallapur CP (2000) Screening of chilli genotypes against thrips and mites. Insect Environ 5:154–155Google Scholar
  62. Mallard S, Cantet M, Massire A, Bachellez A, Sophie E, Lefebvre V (2013) A key QTL cluster is conserved among accessions and exhibits broad-spectrum resistance to Phytophthoracapsici: a valuable locus for pepper breeding. Mol Breed 32:349–364CrossRefGoogle Scholar
  63. Mathur R, Dangi RS, Dass SC, Malhotra RC (2000) The hottest chilli variety in India. Curr Sci 79:287–288Google Scholar
  64. Mimura Y, Kageyama T, Yoshikawa M, Hirai M (2009) QTL analysis for resistance to Ralstonia solanacearum in Capsicum accession LS2341. J Jpn Soc Hort Sci 78:307–313CrossRefGoogle Scholar
  65. Minamiyama Y, Tsuro M, Kubo T, Hirai M (2007) QTL analysis for resistance to Phytophthoracapsici in pepper using a high density SSR-based map. Breed Sci 57:129–134CrossRefGoogle Scholar
  66. Momol MT, Pappu HR, Dankers W, Rich JR, Olson SM (2000) First report of tomato spotted wilt virus in Habanero and Tabasco peppers in Florida. Plant Dis 84:1154CrossRefGoogle Scholar
  67. Mongkolporn D, Taylor PWJ (2011) Capsicum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, BerlinGoogle Scholar
  68. Moury B, Palloix A, Selassie-Gebre K, Marchoux G (1997) Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94:45–52CrossRefGoogle Scholar
  69. Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper. Genome 43:137–142CrossRefGoogle Scholar
  70. Moury B, Verdin E (2012) Viruses of pepper crops in the Mediterranean basin: a remarkable stasis. Adv Virus Res 84:127–162Google Scholar
  71. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  72. Nabhan G (1990) Conservationists and forest services join forces to save wild chiles. Diversity 6:47–48Google Scholar
  73. Naitam NR, Patang Rao DA, Deshmukh SD (1990) Resistance response of chilli cultivars to leaf curl. MPKV Res J 14:206–207Google Scholar
  74. Naresh P, Bhatt RM, Venkatachalapathi V, Gangadharrao P, Madhavi Reddy K (2017) Inheritance of root traits in an interspecific Cross of Capsicum annuum × C. chinense in the presence of low moisture. Int J Veg Sci 23:575–583CrossRefGoogle Scholar
  75. Naresh P, Krishna Reddy M, Hema Chandra Reddy P, Madhavi Reddy K (2016) Screening chilli (Capsicum spp.) germplasm against Cucumber mosaic virus and Chilli veinal mottle virus and inheritance of resistance. Eur J Plant Pathol 146:451–464CrossRefGoogle Scholar
  76. Nono-womdim R, Marchoux G, Pochard E, Palloix A, Gebre-selassie K (1991) Resistance of pepper lines to the movement of Cucumber mosaic virus. J Phytopathol 132:21–32CrossRefGoogle Scholar
  77. Ogundiwin EA, Berke TF, Massoudi M, Black LL, Huestis G, Choi D, Lee S, Prince JP (2005) Construction of 2 intraspecific linkage maps and identification of resistance QTL for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 48:698–711CrossRefPubMedPubMedCentralGoogle Scholar
  78. Pagán I, Betancourt M, de Miguel J, Piñero D, Fraile A, García-Arenal F (2010) Genomic and biological characterization of chiltepin yellow mosaic virus, a new potyovirus infecting Capsicum annuum var. aviculare in Mexico. Arch Virol 155:675–684CrossRefPubMedPubMedCentralGoogle Scholar
  79. Perramond E (2005) The politics of ecology: local knowledge and wild chili collection in Sonora, Mexico. J Lat Am Geogr 4:59–75.  https://doi.org/10.1353/lag.2005.0025CrossRefGoogle Scholar
  80. Perry L, Dickau R, Zarrillo S, Holst I, Pearsall DM, Piperno DR, Berman MJ, Cooke RG, Rademaker K, Ranere AJ, Scott Raymond JC, Sandweiss DH, Scaramelli F, Tarble K, Zeidler JA (2007) Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986–988CrossRefPubMedPubMedCentralGoogle Scholar
  81. Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133CrossRefGoogle Scholar
  82. Pochard E, Daubeze AM (1989) Progressive construction of a polygenic resistance to Cucumber mosaic virus in the pepper. In: Proceedings of EUCARPIA meeting on genetics and breeding of capsicum and eggplant, 7th, Kragujevac, Yugoslavia, pp 189–192Google Scholar
  83. Prohens J, Gramazio P, Plaza M, Dempewold H, Kilian B, Diez MJ, Fita A, Herraiz FJ, Rodriguez-Burruezo A, Soler S, Knapp S, Vilanova S (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213.  https://doi.org/10.1007/s10681-017-1938-9
  84. Qin C, Yub C, Shena Y, Fang X, Chen L, Mind J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, González-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Lu X, Montes-Hernández S, Leyva-González MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140CrossRefGoogle Scholar
  85. Quirin EA, Ogundiwin EA, Prince JP, Mazourek M, Briggs MO, Chlanda TS, Kim KT, Falise M, Kang BC, Jahn MM (2005) Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto. 5.2, a major QTL for resistance to Phytophthora capsici Leon in pepper. Theor Appl Genet 110:605–612CrossRefPubMedPubMedCentralGoogle Scholar
  86. Rai VP, Kumar R, Kumar S, Rai A, Kumar A, Singh M, Singh SP, Rai AB, Paliwal R (2013) Genetic diversity in Capsicum germplasm based on microsatellite and random amplified microsatellite polymorphism markers. Physiol Mol Biol Plants 19:575–586CrossRefPubMedPubMedCentralGoogle Scholar
  87. Rai VP, Kumar R, Singh SP, Singh S, Kumar S, Singh M, Rai M (2014) Monogenic recessive resistance to pepper leaf curl virus in Capsicum. Sci Hort 172:34–38CrossRefGoogle Scholar
  88. Rameash KS, Pandravada SR, Sivaraj N, Sarath Babu B, Chakrabarty SK (2015) Screening chilli (Capsicum annuum L.) genotypes for resistance to broad mite (Polyphagotarsonemus latus Banks) and analysing the geographic distribution of resistance. Elec J Plant Breed 6:928–937Google Scholar
  89. Reddy KR, Kakani VG (2007) Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Sci Hort 112:132–135CrossRefGoogle Scholar
  90. Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 87:2089–2098CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sarath Babu B, Pandravada SR, Reddy JK, Varaprasad KS, Sreekanth M (2002) Field screening of pepper germplasm for source of resistance against leaf curl caused by thrips, Scirtothrips dorsalis Hood and mites, Polyphagotarsonemus latus Banks. Indian J Plant Prot 30:7–12Google Scholar
  92. Sarath Babu B, Pandravada SR, Prasada Rao RDVJ, Anitha K, Chakrabarty SK, Varaprasad KS (2011) Global sources of pepper genetic resources against arthropods, nematodes and pathogens. Crop Prot 30:389–400CrossRefGoogle Scholar
  93. Sanchez-Puerta MV, Masuelli RW (2011) Evolution of nematode-resistant Mi-1 gene homologs in three species of Solanum. Mol Genet Genom 285:207–218CrossRefGoogle Scholar
  94. Singh AK, Kushwaha N, Chakraborty S (2016) Synergistic interaction among begomoviruses leads to suppression of host defense-related gene expression and breakdown of resistance in chilli. Appl Micorbiol Biotechnol.  https://doi.org/10.1007/s00253-015-7279-5
  95. Soler S, Debreczeni DE, Vidal E, Aramburu J, Lopez C, Galipienso L, Rubio L (2015) A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus. Ann Appl Biol 167:343–353CrossRefGoogle Scholar
  96. Srivastava A, Mangal M, Saritha RK, Kalia P (2017) Screening of chilli pepper (Capscium spp.) lines for resistance to the begomovirus causing chili leaf curl disease in India. Crop Prot 100:177–185CrossRefGoogle Scholar
  97. Srivastava A, Mangal M, Saritha RK, Santosh LJ, Uttamgir Gosavy G, Kalia P (2015) Natural epiphytotic screening of chilli germplasm lines against leaf curl virus complex. Int J Trop Agric 33:3581–3586Google Scholar
  98. Sung U, Chang YY, Ting NL (2005) Capsaicin biosynthesis in water stress hot pepper fruits. Bot Bull Acad Sin 46:35–42Google Scholar
  99. Suwor P, Sanitchon J, Thummabenjapone P, Kumar S, Techawongstien S (2017) Inheritance analysis of anthracnose resistance and marker-assisted selection in introgression populations of chili (Capsicum annuum L.). Sci Hort 220:20–26CrossRefGoogle Scholar
  100. Suwor P, Thummabenjapone P, Sanitchon J, Kumar S, Techawongstien S (2015) Phenotypic and genotypic responses of chili (Capsicum annuum L.) progressive lines with different resistant genes against anthracnose pathogen (Colletotrichum spp.). Eur Plant Pathol 143:725–736CrossRefGoogle Scholar
  101. Suzuki K, Kuroda T, Miura Y, Muria J (2003) Screening and wild traits of virus resistant source in Capsicum spp. Plant Dis 87:779–783CrossRefGoogle Scholar
  102. Swaminathan B, Siva Balan KC, Anadaraja N, Manikanda Boopathi N, Schreinemachers P, Srinivasan R, Wu MH (2016) Profitability of begomovirus management strategies among chilli farmers in Tamil Nadu: a gross margin impact analysis. Indian J Agric Res 50:159–166Google Scholar
  103. Sy O, Steiner R, Bosland PW (2008) Recombinant inbred line differential identifies race-specific resistance to phytophthora root rot in Capsicum annuum. Phytopathology 98:867–870CrossRefPubMedPubMedCentralGoogle Scholar
  104. Tewksbury JJ, Nabhan G (2001) Directed deterrence by capsaicin in chillies. Nature 41:403–404CrossRefGoogle Scholar
  105. Tewksbury JJ, Nabhan GP, Norman D, Suzan H, Tuxill J, Donovan J (1999) In situ conservation of wild chiles and their biotic associations. Conserv Biol 13:98–107CrossRefGoogle Scholar
  106. Thakur PP, Mathew D, Nazeem PA, Abida PS, Indira P, Girija D, Shylaja MR, Valsala PA (2014) Identification of allele specific AFLP markers linked with bacterial wilt (Ralstonia solanacearum (Smith) resistance in hot peppers (Capsicum annuum L.). Physiol Mol Plant Pathol 87:19–24CrossRefGoogle Scholar
  107. Thakur H, Jindal SK, Sharma A, Dhaliwal MS (2019) A monogenic dominant resistance for leaf curl virus disease in chilli pepper (Capsicum annuum L.). Crop Prot 116:115–120Google Scholar
  108. Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann App Biol 142:145–164CrossRefGoogle Scholar
  109. Venkatesh J, An J, Kang WH, Jahn M, Kang BC (2018) Fine mapping of the dominant potyvirus resistance gene Pvr7 reveals a relationship with Pvr4 in Capsicum annuum. Phytopathology 108:142–148CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wang A, Krishnaswamy S (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement: eIF4E-mediated resistance to plant viruses. Mol Plant Pathol 13:795–803CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wang D, Bosland PW (2006) The genes of Capsicum. HortScience 41:1169–1187CrossRefGoogle Scholar
  112. Wang LH, Gu XH, Hu MY, Mao SL, Zhang ZH, Peng DL, Yun XF, Zhang BX (2009) A SCAR marker linked to the N gene for resistance to root knot nematodes (Meloidogyne spp.) in pepper (Capsicum annuum L.). Sci Hort 22:18–322Google Scholar
  113. Wang P, Wang L, Guo J, Yang W, Shen H (2016) Molecular mapping of a gene conferring resistance to Phytophthora capsici Leonian race 2 in pepper line PI201234 (Capsicum annuum L.). Mol Breed 36:66.  https://doi.org/10.1007/s11032-016-0464-0
  114. Yao M, Li N, Wang F, Zhibiao YE (2013) Genetic analysis and identification of QTLs for resistance to Cucumber mosaic virus in chili pepper (Capsicum annuum L.). Euphytica 193:135–145CrossRefGoogle Scholar
  115. Yoon JK, Park HG (2005) Trispecies bridge crosses, (Capsicum annuum × C. chinense) × C. baccatum, as an alternative for introgression of anthracnose resistance from C. baccatum into C. annuum. Hort Environ Biotechnol 46:5–9Google Scholar
  116. Yoon JB, Yang DC, Do JW, Park HG (2006) Overcoming two post-fertilization genetic barriers in interspecific hybridization between Capsicum annuum and C. baccatum for introgression of anthracnose resistance. Breed Sci 56:31–38CrossRefGoogle Scholar
  117. Zhani K, Elouer MA, Aloui H, Hannachi C (2012) Selection of a salt tolerant Tunisian cultivar of chilli (Capsicum frutescens). Eurasia J Bio Sci 6:47–59CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Derek W. Barchenger
    • 1
  • Ponnam Naresh
    • 2
  • Sanjeet Kumar
    • 1
    Email author
  1. 1.World Vegetable CenterShanhua, TainanTaiwan
  2. 2.Central Horticultural Experiment Station (ICAR-IIHR)BhubaneswarIndia

Personalised recommendations