Skip to main content

Walker Osserman Metric of Signature (3, 3)

  • Chapter
  • First Online:
Mathematical Structures and Applications

Abstract

A Walker m-manifold is a pseudo-Riemannian manifold, which admits a field of parallel null r-planes, with \(r{\leqslant } \frac {m}{2}\). The Riemann extension is an important method to produce Walker metric on the cotangent bundle T M of any affine manifold (M, ∇). In this paper, we investigate the torsion-free affine manifold (M, ∇) and their Riemann extension \((T^* M,\bar {g})\) as concerns heredity of the Osserman condition.

Dedicated to Prof. Mahouton Norbert Hounkonnou on the occasion of his 60th Birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Calviño-Louzao, E. García-Rio, P. Gilkey, R. Vázquez-Lorenzo, The geometry of modified Riemannian extensions. Proc. R. Soc. A 465, 2023–2040 (2009)

    Article  MathSciNet  Google Scholar 

  2. E. Calviño-Louzao, E. García-Río, and R. Vázquez-Lorenzo, Riemann extensions of torsion-free connections with degenerate Ricci tensor. Can. J. Math. 62(5), 1037–1057 (2010)

    Article  MathSciNet  Google Scholar 

  3. E. Calviño-Louzao, E. García-Río, P. Gilkey, R. Vázquez-Lorenzo, Higher-dimensional Osserman metrics with non-nilpotent Jacobi operators. Geom. Dedicata 156, 151–163 (2012)

    Article  MathSciNet  Google Scholar 

  4. M. Chaichi, E. García-Río, Y. Matsushita, Curvature properties of four-dimensional Walker metrics. Classical Quantum Gravity 22, 559–577 (2005)

    Article  MathSciNet  Google Scholar 

  5. Q.S. Chi, A curvature characterization of certain locally rank-one symmetric spaces. J. Differ. Geom. 28, 187–202 (1988)

    Article  MathSciNet  Google Scholar 

  6. A.S. Diallo, Affine Osserman connections on 2-dimensional manifolds. Afr. Dispora J. Math. 11(1), 103–109 (2011)

    MathSciNet  MATH  Google Scholar 

  7. A.S. Diallo, The Riemann extension of an affine Osserman connection on 3-dimensional manifold. Glob. J. Adv. Res. Class. Mod. Geom. 2(2), 69–75 (2013)

    Google Scholar 

  8. A.S. Diallo, M. Hassirou, Examples of Osserman metrics of (3,  3)-signature. J. Math. Sci. Adv. Appl. 7(2), 95–103 (2011)

    MathSciNet  MATH  Google Scholar 

  9. A.S. Diallo, M. Hassirou, Two families of affine Osserman connections on 3-dimensional manifolds. Afr. Diaspora J. Math. 14(2), 178–186 (2012)

    MathSciNet  MATH  Google Scholar 

  10. A.S. Diallo, P.G. Kenmogne, M. Hassirou, Affine Osserman connections which are locally symmetrics. Glob. J. Adv. Res. Class. Mod. Geom. 3(1), 1–6 (2014)

    MathSciNet  Google Scholar 

  11. A.S. Diallo, M. Hassirou, I. Katambé, Affine Osserman connections which are Ricci flat but not flat. Int. J. Pure Appl. Math. 91(3), 305–312 (2014)

    Article  Google Scholar 

  12. A.S. Diallo, M. Hassirou, I. Katambé, Examples of affine Osserman 3-manifolds. Far East J. Math. Sci. 94(1), 1–11 (2014)

    MATH  Google Scholar 

  13. E. García-Rio, D.N. Kupeli, M.E. Vázquez-Abal, R. Vázquez-Lorenzo, Affine Osserman connections and their Riemannian extensions. Differential Geom. Appl. 11, 145–153 (1999)

    Article  MathSciNet  Google Scholar 

  14. E. García-Rio, D.N. Kupeli, R. Vázquez-Lorenzo, Osserman Manifolds in Semi-Riemannian Geometry. Lectures Notes in Mathematics, vol. 1777 (Springer, Berlin, 2002)

    Book  Google Scholar 

  15. P. Gilkey, A. Swann, L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator. Q. J. Math. Oxford 46, 299–320 (1995)

    Article  MathSciNet  Google Scholar 

  16. Y. Nikolayevsky, Osserman manifolds of dimension 8. Manuscr. Math. 115, 31–53 (2004)

    Article  MathSciNet  Google Scholar 

  17. Y. Nikolayevsky, Osserman conjecture in dimension ≠ 8,  16. Math. Ann. 331, 505–522 (2005)

    Article  MathSciNet  Google Scholar 

  18. Y. Nikolayevsky, On Osserman manifolds of dimension 16, in Contemporary Geometry and Related Topics (University of Belgrade, Belgrade, 2006), pp. 379–398

    MATH  Google Scholar 

  19. K. Nomizu, T. Sasaki, Affine Differential Geometry, vol. 111 (Cambridge University Press, Cambridge, 2008)

    MATH  Google Scholar 

  20. R. Osserman, Curvature in the eighties. Am. Math. Mon. 97, 731–756 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdoul Salam Diallo .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Components of the Curvature Tensor

The non-zero components of the curvature tensor of the affine connection (3.1) are given by

$$\displaystyle \begin{aligned} R(\partial_1,\partial_2)\partial_1 &= (\partial_1 f_2 -\partial_2 f_1 +f^{2}_{2} -f_1 f_4)\partial_2 \\ R(\partial_1,\partial_2)\partial_2 &= (\partial_1 f_4 -\partial_2 f_2)\partial_2 \\ R(\partial_1,\partial_2)\partial_3 &= (\partial_1 f_5 -\partial_2 f_3 +f_2f_5 -f_3f_4)\partial_2 \\ R(\partial_1,\partial_3)\partial_1 &= (\partial_1 f_3 -\partial_3 f_1 +f_2 f_3 -f_1f_5)\partial_2\\ R(\partial_1,\partial_3)\partial_2 &= (\partial_1 f_5 -\partial_3 f_2)\partial_2 \\ R(\partial_1,\partial_3)\partial_3 &= (\partial_1 f_6 -\partial_3 f_3 +f_2f_6 -f_3 f_5)\partial_2\\ R(\partial_2,\partial_3)\partial_1 &= (\partial_2 f_3 -\partial_3 f_2 +f_3f_4 -f_2f_5)\partial_2\\ R(\partial_2,\partial_3)\partial_2 &= (\partial_2 f_5 -\partial_3 f_4)\partial_2\\ R(\partial_2,\partial_3)\partial_3 &= (\partial_2 f_6 -\partial_3 f_5 +f_4f_6 -f^{2}_{5})\partial_2. \end{aligned} $$

Appendix 2: Osserman Geometry

Let R be the curvature operator of a Riemannian manifold (M, g) of dimension m. The Jacobi operator \(\mathcal {J}(x):y\mapsto R(y,x)x\) is the self-adjoint endomorphism of the tangent bundle. Following the seminal work of Osserman [20], one says that (M, g) is Osserman if the eigenvalues of \(\mathcal {J}\) are constant on the unit sphere bundle

$$\displaystyle \begin{aligned} \begin{array}{rcl} S(M,g):=\{X\in TM: g(X,X)=1\}. \end{array} \end{aligned} $$

Work of Chi [5], of Gilkey et al. [15], and of Nikolayevsky [16, 17] show that any complete and simply connected Osserman manifold of dimension m ≠ 16 is a rank-one symmetric space; the 16-dimensional setting is exceptional and the situation is still not clear in that setting although there are some partial result due, again, to Nikolayevsky [18].

Suppose (M, g) is a pseudo-Riemannian manifold of signature (p, g) for p > 0 and q > 0. The pseudo-sphere bundles are defined by setting

$$\displaystyle \begin{aligned} \begin{array}{rcl} S^{\pm}(M,g):=\{X\in TM: g(X,X)= \pm 1\}. \end{array} \end{aligned} $$

One says that (M, g) is spacelike (resp. timelike) Osserman if the eigenvalues of \(\mathcal {J}\) are constant on S +(M, g) (resp. S (M, g)). The situation is rather different here as the Jacobi operator is no longer diagonalizable and can have nontrivial Jordan normal form as shown by Garcá-Ró et al. [13]. We refer to [14] for more information on Osserman manifolds.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diallo, A.S., Hassirou, M., Issa, O.T. (2018). Walker Osserman Metric of Signature (3, 3). In: Diagana, T., Toni, B. (eds) Mathematical Structures and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-319-97175-9_8

Download citation

Publish with us

Policies and ethics