Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 384 Accesses

Abstract

The history of mankind is a story of communication. Over centuries, the urge of human beings to exchange thoughts with each other over long distances has driven a variety of sociological and technological innovations: starting in ancient Persia and Egypt with letters written on the bark of trees or papyrus and transported by couriers, enriching cultural exchange between distant places, over the invention of the printing press for fast duplication of e.g. newspapers, or later the telephone for personal communication, up to today, where the whole world is just a switch away, either on radio, television, a computer or just a small mobile phone in your pocket.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  2. Simon, C., et al.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  3. Chou, C.-W., et al.: Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007)

    Article  ADS  Google Scholar 

  4. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  5. Tittel, W., et al.: Photon-echo quantum memory in solid state systems. Laser Photonics Rev. 4, 244–267 (2010)

    Article  ADS  Google Scholar 

  6. Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)

    Article  ADS  Google Scholar 

  7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, New York (2011)

    Google Scholar 

  8. Aaronson, S.: Quantum Computing since Democritus. Cambridge University Press (2013)

    Google Scholar 

  9. Munro, W.J., Harrison, K.A., Stephens, A.M., Devitt, S.J., Nemoto, K.: From quantum multiplexing to high-performance quantum networking. Nat. Photonics 4, 792–796 (2010)

    Article  ADS  Google Scholar 

  10. Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photonics 6, 777–781 (2012)

    Article  ADS  Google Scholar 

  11. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  12. Ho, J., Boston, A., Palsson, M., Pryde, G.: Experimental noiseless linear amplification using weak measurements. New J. Phys. 18, 093026 (2016)

    Article  ADS  Google Scholar 

  13. McMahon, N.A., Lund, A.P., Ralph, T.C.: Optimal architecture for a nondeterministic noiseless linear amplifier. Phys. Rev. A 89, 023846 (2014)

    Article  ADS  Google Scholar 

  14. Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L., Lukin, M.D.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    Article  ADS  Google Scholar 

  15. Hosseini, M., Sparkes, B.M., Campbell, G., Lam, P.K., Buchler, B.C.: High efficiency coherent optical memory with warm rubidium vapour. Nat. Commun. 2, 174 (2011)

    Article  ADS  Google Scholar 

  16. Hosseini, M., Campbell, G., Sparkes, B.M., Lam, P.K., Buchler, B.C.: Unconditional room-temperature quantum memory. Nat. Phys. 7, 794–798 (2011)

    Article  Google Scholar 

  17. Kielpinski, D., et al.: A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001)

    Article  ADS  Google Scholar 

  18. Schindler, P., et al.: A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013)

    Article  ADS  Google Scholar 

  19. Fuchs, G.D., Burkard, G., Klimov, P.V., Awschalom, D.D.: A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 7, 789–793 (2011)

    Article  Google Scholar 

  20. Heshami, K., et al.: Raman quantum memory based on an ensemble of nitrogen-vacancy centers coupled to a microcavity. Phys. Rev. A 89, 040301 (2014)

    Article  ADS  Google Scholar 

  21. Afzelius, M., Simon, C., de Riedmatten, H., Gisin, N.: Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009)

    Article  ADS  Google Scholar 

  22. Rieländer, D., et al.: Quantum storage of heralded single photons in a praseodymium-doped crystal. Phys. Rev. Lett. 112, 040504 (2014)

    Article  ADS  Google Scholar 

  23. Zhong, M., et al.: Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015)

    Article  ADS  Google Scholar 

  24. Zhao, L., et al.: Photon pairs with coherence time exceeding 1 \(\upmu {\rm s}\). Optica 1, 84–88 (2014)

    Article  ADS  Google Scholar 

  25. Liao, K., et al.: Subnatural-linewidth polarization-entangled photon pairs with controllable temporal length. Phys. Rev. Lett. 112, 243602 (2014)

    Article  ADS  Google Scholar 

  26. Rosenfeld, W., et al.: Towards high-fidelity interference of photons emitted by two remotely trapped Rb-87 atoms. Opt. Spectrosc. 111, 535 (2011)

    Article  ADS  Google Scholar 

  27. Higginbottom, D.B., et al.: Pure single photons from a trapped atom source. New J. Phys. 18, 093038 (2016)

    Article  ADS  Google Scholar 

  28. Maurer, C., Becher, C., Russo, C., Eschner, J., Blatt, R.: A single-photon source based on a single \({\rm ca}^{+}\) ion. New J. Phys. 6, 94 (2004)

    Article  ADS  Google Scholar 

  29. Albrecht, R., et al.: Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity. Appl. Phys. Lett. 105, 073113 (2014)

    Article  ADS  Google Scholar 

  30. Ou, Z.Y., Lu, Y.J.: Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 83, 2556–2559 (1999)

    Article  ADS  Google Scholar 

  31. Scholz, M., Koch, L., Benson, O.: Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett. 102, 063603 (2009)

    Article  ADS  Google Scholar 

  32. Zhang, H., et al.: Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photonics 5, 628–632 (2011)

    Article  ADS  Google Scholar 

  33. Fekete, J., Rieländer, D., Cristiani, M., de Riedmatten, H.: Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys. Rev. Lett. 110, 220502 (2013)

    Article  ADS  Google Scholar 

  34. Rambach, M., Nikolova, A., Weinhold, T.J., White, A.G.: Sub-megahertz linewidth single photon source. APL Photonics 1 (2016)

    Google Scholar 

  35. Brown, R.H., Twiss, R.Q.: Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)

    Google Scholar 

  36. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  37. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  38. Loudon, R.: The Quantum Theory of Light, 1st edn. Clarendon Press, Oxford (1973)

    Google Scholar 

  39. Fasel, S., et al.: High-quality asynchronous heralded single-photon source at telecom wavelength. New J. Phys. 6, 163 (2004)

    Article  ADS  Google Scholar 

  40. Grangier, P., Roger, G., Aspect, A.: Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173 (1986)

    Article  ADS  Google Scholar 

  41. Kwiat, P.G., Chiao, R.Y.: Observation of a nonclassical berry’s phase for the photon. Phys. Rev. Lett. 66, 588–591 (1991)

    Article  ADS  Google Scholar 

  42. Poh, H.S., Joshi, S.K., Cerè, A., Cabello, A., Kurtsiefer, C.: Approaching tsirelson’s bound in a photon pair experiment. Phys. Rev. Lett. 115, 180408 (2015)

    Article  ADS  Google Scholar 

  43. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  44. Clausen, C., et al.: Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011)

    Article  ADS  Google Scholar 

  45. Lu, Y.J., Ou, Z.Y.: Optical parametric oscillator far below threshold: experiment versus theory. Phys. Rev. A 62, 033804 (2000)

    Article  ADS  Google Scholar 

  46. Kuklewicz, C.E., Wong, F.N.C., Shapiro, J.H.: Time-bin-modulated biphotons from cavity-enhanced down-conversion. Phys. Rev. Lett. 97, 223601 (2006)

    Article  ADS  Google Scholar 

  47. Neergaard-Nielsen, J.S., Nielsen, B.M., Takahashi, H., Vistnes, A.I., Polzik, E.S.: High purity bright single photon source. Opt. Express 15, 7940–7949 (2007)

    Article  ADS  Google Scholar 

  48. Bao, X.-H., et al.: Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys. Rev. Lett. 101, 190501 (2008)

    Article  ADS  Google Scholar 

  49. Wang, F.-Y., Shi, B.-S., Guo, G.-C.: Generation of narrow-band photon pairs for quantum memory. Opt. Commun. 283, 2974–2977 (2010)

    Article  ADS  Google Scholar 

  50. Chuu, C.-S., Harris, S.E.: Ultrabright backward-wave biphoton source. Phys. Rev. A 83, 061803 (2011)

    Article  ADS  Google Scholar 

  51. Pomarico, E., Sanguinetti, B., Osorio, C.I., Herrmann, H., Thew, R.T.: Engineering integrated pure narrow-band photon sources. New J. Phys. 14, 033008 (2012)

    Article  ADS  Google Scholar 

  52. Zhou, Z.-Y., Ding, D.-S., Li, Y., Wang, F.-Y., Shi, B.-S.: Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration. J. Opt. Soc. Am. B 31, 128–134 (2014)

    Article  ADS  Google Scholar 

  53. Monteiro, F., Martin, A., Sanguinetti, B., Zbinden, H., Thew, R.T.: Narrowband photon pair source for quantum networks. Opt. Express 22, 4371–4378 (2014)

    Article  ADS  Google Scholar 

  54. Luo, K.-H., et al.: Direct generation of genuine single-longitudinal-mode narrowband photon pairs. New J. Phys. 17, 073039 (2015)

    Article  ADS  Google Scholar 

  55. Förtsch, M., et al.: Highly efficient generation of single-mode photon pairs from a crystalline whispering-gallery-mode resonator source. Phys. Rev. A 91, 023812 (2015)

    Article  ADS  Google Scholar 

  56. Ahlrichs, A., Benson, O.: Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect. Appl. Phys. Lett. 108, 021111 (2016)

    Article  ADS  Google Scholar 

  57. Sparkes, B.M., Hosseini, M., Hétet, G., Lam, P.K., Buchler, B.C.: An AC stark gradient echo memory in cold atoms. Phys. Rev. A 82, 043847 (2010)

    Article  ADS  Google Scholar 

  58. Sparkes, B.M., et al.: Gradient echo memory in an ultra-high optical depth cold atomic ensemble. New J. Phys. 15, 085027 (2013)

    Article  ADS  Google Scholar 

  59. Higginbottom, D.B., et al.: Spatial-mode storage in a gradient-echo memory. Phys. Rev. A 86, 023801 (2012)

    Article  ADS  Google Scholar 

  60. Cho, Y.-W., et al.: Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3, 100–107 (2016)

    Article  Google Scholar 

  61. Steck, D.A.: Rubidium 87 D line data (2015). http://steck.us/alkalidata/

  62. Quantum States of Light. Springer, Berlin, Heidelberg (2015)

    Google Scholar 

  63. Träger, F.: Handbook of Lasers and Optics. Springer Handbooks, 1st edn. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  64. Cregan, R.F., et al.: Single-mode photonic band gap guidance of light in air. Science 285, 1537 (1999)

    Article  Google Scholar 

  65. Benabid, F., Couny, F., Knight, J., Birks, T., Russell, P.: Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005)

    Article  ADS  Google Scholar 

  66. Perrella, C., et al.: High-efficiency cross-phase modulation in a gas-filled waveguide. Phys. Rev. A 88, 013819 (2013)

    Article  ADS  Google Scholar 

  67. Saha, K., Venkataraman, V., Londero, P., Gaeta, A.L.: Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber. Phys. Rev. A 83, 033833 (2011)

    Article  ADS  Google Scholar 

  68. Slepkov, A.D., Bhagwat, A.R., Venkataraman, V., Londero, P., Gaeta, A.L.: Spectroscopy of Rb atoms in hollow-core fibers. Phys. Rev. A 81, 053825 (2010)

    Article  ADS  Google Scholar 

  69. Perrella, C., Light, P.S., Stace, T.M., Benabid, F., Luiten, A.N.: High-resolution optical spectroscopy in a hollow-core photonic crystal fiber. Phys. Rev. A 85, 012518 (2012)

    Article  ADS  Google Scholar 

  70. Perrella, C., et al.: High-resolution two-photon spectroscopy of rubidium within a confined geometry. Phys. Rev. A 87, 013818 (2013)

    Article  ADS  Google Scholar 

  71. Okaba, S., et al.: Lamb-dicke spectroscopy of atoms in a hollow-core photonic crystal fibre. Nat. Commun. 5, 4096 (2014)

    Article  Google Scholar 

  72. Milburn, G.J.: Quantum optical fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989)

    Article  ADS  Google Scholar 

  73. Araújo, M., et al.: Witnessing causal nonseparability. New J. Phys. 17, 102001 (2015)

    Article  ADS  Google Scholar 

  74. Chiribella, G., D’Ariano, G.M., Perinotti, P., Valiron, B.: Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013)

    Article  ADS  Google Scholar 

  75. Collett, M.J., Gardiner, C.W.: Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30, 1386–1391 (1984)

    Article  ADS  Google Scholar 

  76. Yang, J., et al.: Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources. Phys. Rev. A 80, 042321 (2009)

    Article  ADS  Google Scholar 

  77. Tian, L., Li, S., Yuan, H., Wang, H.: Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line. J. Phys. Soc. Jpn. 85, 124403 (2016)

    Article  ADS  Google Scholar 

  78. Scholz, M., Koch, L., Ullmann, R., Benson, O.: Single-mode operation of a high-brightness narrow-band single-photon source. Appl. Phys. Lett. 94 (2009)

    Google Scholar 

  79. Scholz, M., Koch, L., Benson, O.: Analytical treatment of spectral properties and signal-idler intensity correlations for a double-resonant optical parametric oscillator far below threshold. Opt. Commun. 282, 3518–3523 (2009)

    Article  ADS  Google Scholar 

  80. Schunk, G., et al.: Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source. Optica 2, 773–778 (2015)

    Article  Google Scholar 

  81. Schunk, G., et al.: Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions. J. Mod. Opt. 63, 2058–2073 (2016)

    Article  ADS  Google Scholar 

  82. Wolfgramm, F., et al.: Bright filter-free source of indistinguishable photon pairs. Opt. Express 16, 18145–18151 (2008)

    Article  ADS  Google Scholar 

  83. Haase, A., Piro, N., Eschner, J., Mitchell, M.W.: Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction. Opt. Lett. 34, 55–57 (2009)

    Article  ADS  Google Scholar 

  84. Wolfgramm, F., de Icaza Astiz, Y.A., Beduini, F.A., Cerè, A., Mitchell, M.W.: Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett. 106, 053602 (2011)

    Article  ADS  Google Scholar 

  85. Rieländer, D., Lenhard, A., Mazzera, M., de Riedmatten, H.: Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories. New J. Phys. 18, 123013 (2016)

    Article  ADS  Google Scholar 

  86. de Riedmatten, H., Afzelius, M., Staudt, M.U., Simon, C., Gisin, N.: A solid-state light-matter interface at the single-photon level. Nature 456, 773–777 (2008)

    Article  ADS  Google Scholar 

  87. de Riedmatten, H.: Quantum optics: light storage at record bandwidths. Nat. Photonics 4, 206–207 (2010)

    Article  ADS  Google Scholar 

  88. Chuu, C.-S., Yin, G.Y., Harris, S.E.: A miniature ultrabright source of temporally long, narrowband biphotons. Appl. Phys. Lett. 101, 051108 (2012)

    Article  ADS  Google Scholar 

  89. Loredo, J.C., et al.: Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016)

    Article  Google Scholar 

  90. Lu, Y.J., Campbell, R.L., Ou, Z.Y.: Mode-locked two-photon states. Phys. Rev. Lett. 91, 163602 (2003)

    Article  ADS  Google Scholar 

  91. Xie, Z., et al.: Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photonics 9, 536–542 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rambach .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rambach, M. (2018). Introduction. In: Narrowband Single Photons for Light-Matter Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97154-4_1

Download citation

Publish with us

Policies and ethics