Abstract
In this chapter, we review the genetic foundations of developmental dyscalculia. We begin by briefly reviewing the clinical epidemiology of dyscalculia. Next, we review evidence for genetic susceptibility from familial aggregation and heritability estimates. Evidence for genetic susceptibility is substantial but associated with some limitations. Familial aggregation studies do not distinguish genetic from environmental influences. As heritability does not identify specific genes, it applies only at the population, not at the individual level. Current molecular genetic methods are helping to identify specific genes implicated in dyscalculia. We discuss evidence from genome-wide association studies on dyscalculia and on its comorbidities, mainly dyslexia, autism, and specific language impairment. The number of such studies is small but growing. So far, some candidate genes have been identified, but none of them has yet been confirmed in independent studies. Developmental dyscalculia is a heterogeneous phenotype. Future advances depend, among other things, on improvements in phenotype characterization and identification of families with clear phenotypic segregation.
Keywords
- Dyscalculia
- Gene
- GWAS
- Heritability
- Familial aggregation
This is a preview of subscription content, access via your institution.
Buying options
References
Asbury, K., & Plomin, R. (2013). G is for genes: The impact of genetics on education and achievement. Chichester/Oxford: Wiley Blackwell.
Ashkenazi, S., Black, J. M., Abrams, D. A., Hoeft, F., & Menon, V. (2013). Neurobiological underpinnings of math and reading learning disabilities. Journal of Learning Disabilities, 46, 549–569.
Auerbach, J. G., Gross-Tsur, V., Manor, O., & Shalev, R. S. (2008). Emotional and behavioral characteristics over a six-year period in youths with persistent and nonpersistent dyscalculia. Journal of Learning Disabilities, 41(3), 263–273.
Baron-Cohen, S., Murphy, L., Chakrabarti, B., Craig, I., Mallya, U., Lakatošová, S., et al. (2014). A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: A preliminary study. PLoS One, 9(5), e96374.
Bishop, D. V. M. (2015). The interface between genetics and psychology: Lessons from developmental dyslexia. Proceedings of the Royal Society of London, B, 282, 20143139. https://doi.org/10.1098/rspb.2014.3139
Brandler, W. M., & Paracchini, S. (2014). The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Medicine, 20, 83–90. https://doi.org/10.1016/j.molmed.2013.10.008
Brazil, Ministry of Education. (2016). Brazil in PISA 2015. Executive summary. Brasília: Author. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwiG2Juwn_jWAhXIPpAKHcnABRsQFggyMAI&url=http%3A%2F%2Fdownload.inep.gov.br%2Facoes_internacionais%2Fpisa%2Fdocumentos%2F2016%2Fbrazil_in_pisa_2015_digital.PDF&usg=AOvVaw0dPTfLqCD2mEIZzKKdElEW.
Budd, C. J. (2015). Promoting maths to the general public pp. In R. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 3–16). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199642342.013.024
Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053.
Capano, L., Minden, D., Chen, S. X., Schachar, R. J., & Ickowicz, A. (2008). Mathematical learning disorder in school-age children with attention-deficit hyperactivity disorder. The Canadian Journal of Psychiatry, 53(6), 392–399.
Chen, H., Gu, X. H., Zhou, Y., Ge, Z., Wang, B., Siok, W. T., et al. (2017). A genome-wide association study identifies genetic variants associated with mathematics ability. Scientific Reports, 7, 40365.
Choi, K. H., Zepp, M. E., Higgs, B. W., Weickert, C. S., & Webster, M. J. (2009). Expression profiles of schizophrenia susceptibility genes during human prefrontal cortical development. Journal of Psychiatry and Neuroscience, 34(6), 450–458.
Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.
Desoete, A., Praet, M., Titeca, D., & Ceulemans, A. (2013). Cognitive phenotype of mathematical learning disabilities: What can we learn from siblings? Research in Developmental Disabilities, 34(1), 404–412.
Devine, A., Soltész, F., Nobes, A., Goswami, U., & Szűcs, D. (2013). Gender differences in developmental dyscalculia depend on diagnostic criteria. Learning and Instruction, 27, 31–39.
Docherty, S. J., Davis, O. S., Kovas, Y., Meaburn, E. L., Dale, P. S., Petrill, S. A., et al. (2010). A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes, Brain and Behavior, 9(2), 234–247. https://doi.org/10.1111/j.1601-183X.2009.00553.x.
Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. New York, NY: Psychology Press.
Ehlert, A., Schroeders, U., & Fritz, A. (2012). Kritik am Diskrepanzkriterium in der Diagnostik von Legasthenie und Dyskalkulie (criticizing the definition of dyscalculia and dyslexia via difference scores). Lernen und Lernstörungen, 1(3), 169–184.
Gamboa, L. F., & Waltenberg, F. D. (2012). Inequality of opportunity for educational achievement in Latin America: Evidence from PISA 2006–2009. Economics of Education Review, 31(5), 694–708.
Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). Developmental dyscalculia: Prevalence and demographic features. Developmental Medicine and Child Neurology, 38, 25–33.
Haase, V. G., & Carvalho, M. R. S. (2018). Genetics of dyscalculia 2: In search of endophenotypes. In A. Fritz-Stratmann, V. G. Haase, & P. Räsänen (Eds.), The international handbook of math learning difficulties: From the lab to the classroom. São Paulo, Brazil: Springer.
Hale, J., Alfonso, V., Berninger, V., Bracken, B., Christo, C., Clark, E., et al. (2010). Critical issues in response-to-intervention, comprehensive evaluation, and specific learning disabilities identification and intervention: An expert white paper consensus. Learning Disability Quarterly, 33(3), 223–236.
Hart, S. A., Petrill, S. A., Willcutt, E., Thompson, L. A., Schatschneider, C., Deater-Deckard, K., & Cutting, L. E. (2010). Exploring how symptoms of attention-deficit/hyperactivity disorder are related to reading and mathematics performance: General genes, general environments. Psychological Science, 21(11), 1708–1715. https://doi.org/10.1177/0956797610386617
Haworth, C. M., Kovas, Y., Petrill, S. A., & Plomin, R. (2007). Developmental origins of low mathematics performance and normal variation in twins from 7 to 9 years. Twin Research and Human Genetics, 10(1), 106–117.
Hohol, M., Cipora, K., Willmes, K., & Nuerk, H. C. (2017). Bringing back the balance: Domain-general processes are also important in numerical cognition. Frontiers in Psychology, 8, 499.
Hu, B. H., Cai, Q., Hu, Z., Patel, M., Bard, J., Jamison, J., & Coling, D. (2012, Oct 24). Metalloproteinases and their associated genes contribute to the functional integrity and noise-induced damage in the cochlear sensory epithelium. The Journal of Neuroscience, 32(43), 14927–14941. https://doi.org/10.1523/JNEUROSCI.1588-12.2012
Kere, J. (2014). The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochemical and Biophysical Research Communications, 452, 236–243.
Krapohl, E., Rimfeld, K., Shakeshaft, N. G., Trzaskowski, M., McMillan, A., Pingault, J. B., et al. (2014). The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proceedings of the National Academy of Sciences, 111(42), 15273–15278.
Landerl, K., Göbel, S. M., & Moll, K. (2013). Core deficit and individual manifestations of developmental dyscalculia (DD): The role of comorbidity. Trends in Neuroscience and Education, 2, 38–42.
Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51(3), 287–294. https://doi.org/10.1111/j.1469-7610.2009.02164.x
Ludwig, K. U., Sämann, P., Alexander, M., Becker, J., Bruder, J., Moll, K., et al. (2013). A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults. Translational Psychiatry, 3(2), e229.
Malfatti, E., Böhm, J., Lacène, E., Beuvin, M., Brochier, G., Romero, N. B., & Laporte, J. (2015). A premature stop codon in MYO18B is associated with severe Nemaline myopathy with cardiomyopathy. Journal of Neuromuscular Diseases, 2(3), 219–227. https://doi.org/10.3233/JND-150085
Marino, C., Mascheretti, S., Riva, V., Cattaneo, F., Rigoletto, C., Rusconi, M., et al. (2011). Pleiotropic effects of DCDC2 and DYX1C1 genes on language and mathematics traits in nuclear families of developmental dyslexia. Behavior Genetics, 41(1), 67–76. https://doi.org/10.1007/s10519-010-9412-7
Mazzocco, M. M. M. (2007). Defining and differentiating mathematical learning disabilities and difficulties. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 29–47). Baltimore: Brookes.
Nava, C., Keren, B., Mignot, C., Rastetter, A., Chantot-Bastaraud, S., et al. (2014). Prospective diagnostic analysis of copy number variants using SNP microarrays in individuals with autism spectrum disorders. European Journal of Human Genetics, 22, 71–78.
Nishioka, M., Kohno, T., Tani, M., Yanaihara, N., Tomizawa, Y., Otsuka, A., et al. (2002). MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 99, 12269–12274.
Oliveira-Ferreira, F., Costa, D. S., Micheli, L. R., Pinheiro-Chagas, P., & Haase, V. G. (2012). School achievement test: Normative data for a representative sample of elementary school children. Psychology & Neuroscience, 5, 157–164.
Paracchini, S., Diaz, R., & Stein, J. (2016). Advances in dyslexia genetics – New insights into the role of brain asymmetries. Advances in Genetics, 96, 53–97. https://doi.org/10.1016/bs.adgen.2016.08.003
Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: University of London, Institute of Education National Research and Development Centre for Adult Literacy and Numeracy. Available in: eprints.ioe.ac.uk/4758/1/parsons2006does.pdf
Petrill, S. A., Kovas, Y., Hart, S. A., Thompson, L. A., & Plomin, R. (2009). The genetic and environmental etiology of high math performance in 10-year-old twins. Behavior Genetics, 39(4), 371–379. https://doi.org/10.1007/s10519-009-9258-z
Pettigrew, K. A., Fajutrao Valles, S. F., Moll, K., Northstone, K., Ring, S., Pennell, C., et al. (2015). Lack of replication for the myosin-18B association with mathematical ability in independent cohorts. Genes, Brain and Behavior, 14(4), 369–376.
Pinel, P., & Dehaene, S. (2013). Genetic and environmental contributions to brain activation during calculation. NeuroImage, 81, 306–316.
Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., et al. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48, 123–135. https://doi.org/10.1037/a0025356
Sagar, A., Bishop, J. R., Tessman, D. C., Guter, S., Martin, C. L., et al. (2013). Cooccurrence of autism, childhood psychosis, and intellectual disability associated with a de novo 3q29 microdeletion. American Journal of Medical Genetics, A161, 845–849.
Serra-Juhé, C., Martos-Moreno, G. Á., Bou de Pieri, F., Flores, R., González, J. R., Rodríguez-Santiago, B., et al. (2017). Novel genes involved in severe early-onset obesity revealed by rare copy number and sequence variants. PLoS Genetics, 13(5), e1006657. https://doi.org/10.1371/journal.pgen.1006657
Shalev, R. S., Auerbach, J., & Gross-Tsur, V. (1995). Developmental dyscalculia behavioral and attentional aspects: A research note. Journal of Child Psychology and Psychiatry, 36(7), 1261–1268.
Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine and Child Neurology, 47(2), 121–125.
Shalev, R. S., Manor, O., Kerem, B., Ayali, M., Badichi, N., Friedlander, Y., & Gross-Tsur, V. (2001). Developmental dyscalculia is a familial learning disability. Journal of Learning Disabilities, 34(1), 59–65.
Stefansson, H., Meyer-Lindenberg, A., Steinberg, S., Magnusdottir, B., Morgen, K., Arnarsdottir, S., et al. (2014). CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature, 505(7483), 361–366.
Sturman, L. (2015). What is there to learn from international surveys in mathematical achievement. In R. Kadosh & A. C. Dowker (Eds.), Oxford handbook of numerical cognition. Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199642342.013.024
Szklarczyk, A., Ewaleifoh, O., Beique, J. C., Wang, Y., Knorr, D., Haughey, N., et al. (2008, Nov). MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. The FASEB Journal, 22(11), 3757–3767. https://doi.org/10.1096/fj.07-101402
Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., et al. (2016). Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by regulatory factor X (RFX) transcription factors through X-box promoter motifs. The FASEB Journal, 30(10), 3578–3587. https://doi.org/10.1096/fj.201500124RR
Tarkar, A., Loges, N. T., Slagle, C. E., Francis, R., Dougherty, G. W., Tamayo, J. V., et al. (2013). DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nature Genetics, 45(9), 995–1003. https://doi.org/10.1038/ng.2707
Trulioff, A., Ermakov, A., & Malashichev, Y. (2017). Primary cilia as a possible link between left-right asymmetry and neurodevelopmental diseases. Genes, 8(2), 48. https://doi.org/10.3390/genes8020048
Turkheimer, E., Haley, A., Waldron, M., d’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628.
Ulfarsson, M. O., Walters, G. B., Gustafsson, O., Steinberg, S., Silva, A., Doyle, O. M., et al. (2017). 15q11. 2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia. Translational Psychiatry, 7(4), e1109. https://doi.org/10.1038/tp.2017.77
Willatt, L., Cox, J., Barber, J., Cabanas, E. D., Collins, A., et al. (2005). 3q29 microdeletion syndrome: Clinical and molecular characterization of a new syndrome. American Journal of Human Genetics, 77, 154–160.
Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. Fischer (Eds.), Human behavior, learning and the developing brain: Atypical development (pp. 212–378). New York: Guilford.
Wong, T. T. Y., Ho, C. S., & Tang, J. (2014). Identification of children with mathematics learning disabilities (MLDs) using latent class growth analysis. Research in Developmental Disabilities, 35, 2906–2929.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Carvalho, M.R.S., Haase, V.G. (2019). Genetics of Dyscalculia 1: In Search of Genes. In: Fritz, A., Haase, V.G., Räsänen, P. (eds) International Handbook of Mathematical Learning Difficulties. Springer, Cham. https://doi.org/10.1007/978-3-319-97148-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-97148-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97147-6
Online ISBN: 978-3-319-97148-3
eBook Packages: EducationEducation (R0)