Skip to main content

Advance in the Constitutive Modelling for Frozen Soils

  • Conference paper
  • First Online:
Proceedings of China-Europe Conference on Geotechnical Engineering

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

  • 3157 Accesses

Abstract

This paper presents an intensive review of the constitutive models for frozen soil. The models are classified into five categories, namely, empirically fitted model, classical plastic model, rate process model, element assembly model, and hypo-plastic model. The background and relative merits of each type of the models are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ladanyi, B.: An engineering theory of creep of frozen soils. Can. Geotech. J. 9(1), 63–80 (1972)

    Article  Google Scholar 

  2. Sayles, F.: Tri-axial constant strain rate tests and tri-axial creep tests on frozen Ottawa sand. In: Proceedings of 2nd International Permafrost Conference, pp. 384–391. National Academy of Sciences, Washington D.C. (1973)

    Google Scholar 

  3. Andersland, O., Anderson, D.: Geotechnical Engineering for Cold Regions. McGraw-Hill, New York (1978)

    Google Scholar 

  4. Fish, A.: Kinetic nature of the long-term strength of frozen soils. In: Proceedings of 2nd International Symposium on Ground Freezing, pp. 95–108. Balkema, Rotterdam (1980)

    Google Scholar 

  5. Finborud, L., Berggren, A.: Deformation properties of frozen soils. Eng. Geol. 18(S1), 89–96 (1981)

    Article  Google Scholar 

  6. Zhu, Y., Zhang, J., Peng, W., Shen, Z., Miao, L.: Constitutive relations of frozen soil in uniaxial compression. J. Glaciol. Geocryology 14(3), 210–217 (1992)

    Google Scholar 

  7. Ma, W., Chang, X.: Comparison of strength and deformation of artificially frozen soil in two testing manners. J. Glaciol. Geocryology 24(2), 149–154 (2002)

    Google Scholar 

  8. Wang, Z., Yuan, S., Chen, T.: Study on the constitutive model of transversely isotropic frozen soil. Chin. J. Geotech. Eng. 29(8), 1215–1218 (2007)

    Google Scholar 

  9. Xu, G., Peng, C., Wu, W., Qi, J.: Combined constitutive model for creep and steady flow rate of frozen soil in an unconfined condition. Can. Geotech. J. 54(7), 907–914 (2017)

    Article  Google Scholar 

  10. Amiri, S., Grimstad, G., Kadivar, M., Nordal, S.: Constitutive model for rate-independent behavior of saturated frozen soils. Can. Geotech. J. 53(10), 1646–1657 (2016)

    Article  Google Scholar 

  11. Li, D., Wang, R., Hu, P., Zhang, Z.: Investigation on viscoelastic constitutive model artificial frozen soil and experimental evaluation. Low Temp. Archit. Technol. 4, 73–74 (2005)

    Google Scholar 

  12. Yang, Y., Lai, Y., Dong, Y., Li, S.: The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures. Cold Reg. Sci. Technol. 60(2), 154–160 (2010)

    Article  Google Scholar 

  13. Lai, Y., Liao, M., Hu, K.: A constitutive model of frozen saline sandy soil based on energy dissipation theory. Int. J. Plast. 78, 84–113 (2016)

    Article  Google Scholar 

  14. Cai, Z., Zhu, Y., Zhang, C.: Viscoelastoplastic constitutive model of frozen soil and determination of its parameters. J. Glaciol. Geocryology 12(1), 31–40 (1990)

    Google Scholar 

  15. Rong, C., Wang, X., Cheng, H.: An experimental study on finite strain constitutive relations of frozen soil. J. Exp. Mech. 20(1), 133–138 (2005)

    Google Scholar 

  16. Lai, Y., Jin, L., Chang, X.: Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil. Int. J. Plast. 25, 1177–1205 (2009)

    Article  Google Scholar 

  17. Li, Q., Ling, X., Sheng, D.: Elasto-plastic behavior of frozen soil subjected to long-term low-level repeated loading, Part II: constitutive model. Cold Reg. Sci. Technol. 122, 58–70 (2016)

    Article  Google Scholar 

  18. Miao, T., Wei, X., Zhang, C.: Microstructural damage theories of creep of frozen soil. Sci. China (Ser. B) 25(3), 309–317 (1995)

    Google Scholar 

  19. Liu, Z., Zhang, X., Li, H.: A damage constitutive model for frozen soils under uniaxial compression based on CT dynamic distinguishing. Rock Soil Mech. 26(4), 542–546 (2005)

    Google Scholar 

  20. Ning, J., Zhu, Z.: Constitutive model of frozen soil with damage and numerical simulation of the coupled problem. Chin. J. Theor. Appl. Mech. 39(1), 70–76 (2007)

    MathSciNet  Google Scholar 

  21. Li, S., Lai, Y., Zhang, S., Liu, D.: An improved statistical damage constitutive model for warm frozen clay based on Mohr-Coulomb criterion. Cold Reg. Sci. Technol. 57(2–3), 154–159 (2009)

    Article  Google Scholar 

  22. He, P., Cheng, G., Zhu, Y.: Constitutive theories on viscoelstoplasticity and damage of frozen soil. Sci. China (Ser. D) 29(S1), 34–39 (1999)

    Google Scholar 

  23. Zhu, Z., Kang, G., Ma, Y., Xie, Q., Zhang, D., Ning, J.: Temperature damage and constitutive model of frozen soil under dynamic loading. Mech. Mater. 102, 108–116 (2016)

    Article  Google Scholar 

  24. Andersland, O., Akili, W.: Stress effect on creep rates of a frozen clay soil. Géotechnique 17(1), 27–39 (1967)

    Article  Google Scholar 

  25. Fish, A., Sayles, F.: Acoustic emissions during creep of frozen soils. In: Acoustic Emissions in Geotechnical Engineering Practice, pp. 194–206. American Society for Testing and Materials, Baltimore (1981)

    Google Scholar 

  26. Zhu, Y., Carbee, D.: Creep and strength behaviour of frozen silt in uniaxial compression. Technical report, U.S. Army Cold Regions Research and Engineering Laboratory (1987)

    Google Scholar 

  27. Arrhenius, S.: Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für Physikalische Chemie 4, 96–116 (1889)

    Google Scholar 

  28. Arrhenius, S.: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie 4, 226–248 (1889)

    Google Scholar 

  29. Martin, R., Ting, J., Ladd, C.: Creep behavior of frozen sand. Technical report, Department of Civil Engineering, Massachusetts Institute of Technology (1981)

    Google Scholar 

  30. Wang, R., Li, D., Wang, X.: Improved Nishihara model and realization in ADINA FEM. Rock Soil Mech. 27(11), 1954–1958 (2006)

    Google Scholar 

  31. Li, D., Fan, J., Wang, R.: Research on visco-elastic-plastic creep model of artificially frozen soil under high confining pressures. Cold Reg. Sci. Technol. 65(2), 219–225 (2011)

    Article  Google Scholar 

  32. Wang, S., Qi, J., Yin, Z., Zhang, J., Ma, W.: A simple rheological element based creep model for frozen soils. Cold Reg. Sci. Technol. 106–107, 47–54 (2014)

    Article  Google Scholar 

  33. Liao, M., Lai, Y., Liu, E., Wan, X.: A fractional order creep constitutive model of warm frozen silt. Acta Geotech. 12(2), 377–389 (2016)

    Article  Google Scholar 

  34. Xu, G., Wu, W., Qi, J.: An extended hypoplastic constitutive model for frozen sand. Soils Found. 56(4), 704–711 (2016)

    Article  Google Scholar 

  35. Xu, G., Wu, W., Qi, J.: Modeling the viscous behavior of frozen soil with hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 40(15), 2061–2075 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant 11702304) and the State Key Laboratory of Frozen Soil Engineering (Grant SKLFSE201714) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, G., Kong, L., Liu, Y., Chen, C., Sun, Z. (2018). Advance in the Constitutive Modelling for Frozen Soils. In: Wu, W., Yu, HS. (eds) Proceedings of China-Europe Conference on Geotechnical Engineering. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-97112-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97112-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97111-7

  • Online ISBN: 978-3-319-97112-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics