Mathematical Pre-processing

  • Alejandro C. Olivieri


Multivariate calibration models sometimes require one to pre-process the instrumental data with mathematical techniques. Criteria are discussed for performing this relevant activity. The objective is to reduce the impact of physical phenomena or changes in the instrumental response over time.


Mathematical pre-processing Mean centering Smoothing and derivatives Multiplicative scattering correction Standard normal variate and detrend Calibration update 


  1. Allegrini, F., Olivieri, A.C.: An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration. Talanta. 115, 755–760 (2013)CrossRefPubMedGoogle Scholar
  2. Brown, C.D.: Ph. D. Thesis, University of Halifax, Canada (2000).
  3. Brown, C.D., Wentzell, P.D.: Hazards of digital smoothing filters as a preprocessing tool in multivariate calibration. J. Chemometr. 13, 133–152 (1999)CrossRefGoogle Scholar
  4. Brown, C.D., Vega-Montoto, L., Wentzell, P.D.: Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration. Appl. Spectrosc. 54, 1055–1068 (2000)CrossRefGoogle Scholar
  5. Devos, O., Duponchel, L.: Parallel genetic algorithm co-optimization of spectral pre-processing and wavelength selection for PLS regression. Chemom. Intel. Lab. Syst. 107, 50–58 (2011)CrossRefGoogle Scholar
  6. Feudale, R.N., Woody, N.A., Tan, H., Myles, A.J., Brown, S.D., Ferré, J.: Transfer of multivariate calibration models: a review. Chemom. Intel. Lab. Syst. 64, 181–192 (2002)CrossRefGoogle Scholar
  7. Gerretzen, J., Szymańska, E., Jansen, J.J., Bart, J., van Manen, H.J., van den Heuvel, E.R., Buydens, L.M.C.: Simple and effective way for data preprocessing selection based on design of experiments. Anal. Chem. 87, 12096–12103 (2015)CrossRefPubMedGoogle Scholar
  8. Gorry, A.: General least-squares smoothing and differentiation by the convolution (Savitzky–Golay) method. Anal. Chem. 62, 570–573 (1990).Google Scholar
  9. Lestander, T.A., Lindeberg, J., Eriksson, D., Bergstend, U.: Prediction of Pinus sylvestris clear-wood properties using NIR spectroscopy and biorthogonal partial least squares regression. Can. J. For. Res. 38, 2052–2062 (2008)CrossRefGoogle Scholar
  10. Padró, J.M., Osorio-Grisales, J., Arancibia, J.A., Olivieri, A.C., Castells, C.B.: Scope of partial least-squares regression applied to the enantiomeric composition determination of ketoprofen from strongly overlapped chromatographic profiles. J. Sep. Sci. 38, 2423–2430 (2015)CrossRefPubMedGoogle Scholar
  11. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964)CrossRefGoogle Scholar
  12. Tomasi, G., Van den Berg, F., Andersson, C.: Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemometr. 18, 231–241 (2004)CrossRefGoogle Scholar
  13. Wang, Y., Veltkamp, D.J., Kowalski, B.R.: Multivariate instrument standardization. Anal. Chem. 63, 2750–2756 (1991)CrossRefGoogle Scholar
  14. Zapata-Urzúa, C., Pérez-Ortiz, M., Bravo, M., Olivieri, A.C., Álvarez-Lueje, A.: Simultaneous voltammetric determination of levodopa, carbidopa and benserazide in pharmaceuticals using multivariate calibration. Talanta. 82, 962–968 (2010)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alejandro C. Olivieri
    • 1
  1. 1.Universidad Nacional de Rosario, Instituto de Química Rosario - CONICETRosarioArgentina

Personalised recommendations