Chemometrics and Multivariate Calibration

  • Alejandro C. Olivieri


The relationship between univariate, multivariate, and multi-way calibrations is discussed, with emphasis in the analytical advantages which can be achieved in going from simple to more complex data structures.


Univariate calibration Multivariate calibration Multi-way calibration First-order advantage Second-order advantage 


  1. Aleixandre-Tudo, J.L., Nieuwoudt, H., Olivieri, A., Aleixandre, J.L., du Toit, W.: Phenolic profiling of grapes, fermenting samples and wines using UV-visible spectroscopy with chemometrics. Food Control. 85, 11–22 (2018)CrossRefGoogle Scholar
  2. Asimov, A.: I, Robot. Gnome Press, New York (1950)Google Scholar
  3. Borggaard, C., Thodberg, H.H.: Optimal minimal neural interpretation of spectra. Anal. Chem. 64, 545–551 (1992)CrossRefGoogle Scholar
  4. Burns, D.A., Ciurczak, E.W.: Handbook of Near-Infrared Analysis, Practical Spectroscopy Series, vol. 35, 3rd edn. CRC Press, Boca Raton, FL (2008a)Google Scholar
  5. Burns, D.A., Ciurczak, E.W.: Handbook of Near-Infrared Analysis, Practical Spectroscopy Series, vol. 40, 3rd edn. CRC Press, Boca Raton (2008b)Google Scholar
  6. De la Guardia, M., Garrigues, S. (eds.): Handbook of Green Analytical Chemistry. Wiley, Chichester (2012)Google Scholar
  7. do Amaral, C.E.F., Wolf, B.: Current development in non-invasive glucose monitoring. Med. Eng. Phys. 30, 541–549 (2008)CrossRefGoogle Scholar
  8. Escandar, G.M., Faber, N.M., Goicoechea, H.C., Muñoz de la Peña, A., Olivieri, A.C., Poppi, R.J.: Second and third-order multivariate calibration: data, algorithms and applications. Trends Anal. Chem. 26, 752–765 (2007)CrossRefGoogle Scholar
  9. Escandar, G.M., Goicoechea, H.C., Muñoz de la Peña, A., Olivieri, A.C.: Second- and higher-order data generation and calibration: a tutorial. Anal. Chim. Acta. 806, 8–26 (2014)CrossRefPubMedGoogle Scholar
  10. García-García, J.L., Pérez-Guaita, D., Ventura-Gayete, J., Garrigues, J., de la Guardia, M.: Determination of biochemical parameters in human serum by near-infrared spectroscopy. Anal. Methods. 6, 3982–3989 (2014)CrossRefGoogle Scholar
  11. Gichen, M., Dambers, R.G., Cozzolino, D.: A review of some applications in the Australian wine industry. Aust. J. Grape Wine Res. 11, 296–305 (2005)CrossRefGoogle Scholar
  12. Goicoechea, H.C., Olivieri, A.C.: La calibración en Química Analítica. Universidad Nacional del Litoral, Santa Fe (2007)Google Scholar
  13. Liu, Y., Delhom, C., Todd Campbell, B., Martin, V.: Application of near infrared spectroscopy in cotton fiber micronaire measurement. Inform. Process. Agric. 3, 30–35 (2016)Google Scholar
  14. Malin, S.F., Ruchti, T.L., Blank, T.B., Thennadil, S.N., Monfre, S.L.: Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy. Clin. Chem. 45, 1651–1658 (1999)PubMedGoogle Scholar
  15. Olivieri, A.C.: Calibración multivariada. Introducción a la programación en MATLAB. Ediciones Científicas Argentinas, Buenos Aires (2001)Google Scholar
  16. Olivieri, A.C.: Calibración multivariada: Una aproximación práctica. Ediciones Científicas Argentinas, Buenos Aires (2017)Google Scholar
  17. Olivieri, A.C., Escandar, G.M.: Practical Three-Way Calibration. Elsevier, Waltham (2014)Google Scholar
  18. Pasquini, C.: Near infrared spectroscopy: a mature analytical technique with new perspectives – a review. Anal. Chim. Acta. 1026, 8–36 (2018). CrossRefPubMedGoogle Scholar
  19. Perez-Guaita, D., Ventura-Gayete, J., Pérez-Rambla, C., Sancho-Andreu, M., Garrigues, S., de la Guardia, M.: Protein determination in serum and whole blood by attenuated total reflectance infrared spectroscopy. Anal. Bioanal. Chem. 404, 649–656 (2012)CrossRefPubMedGoogle Scholar
  20. Qian, J., Wu, H., Lieber, C., Bergles, E.: Non destructive red wine measurement with dispersive 1064 nm Raman Spectroscopy. Technical Note from BaySpec. (2013)
  21. Rasmussen, P.W.: Qualitative analysis by gas chromatography. GC versus the nose in formulating artificial fruit flavors. J. Chem. Educ. 61, 62–67 (1984)CrossRefGoogle Scholar
  22. Ribeiro, J.S., Ferreira, M.M., Salva, T.J.: Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. Talanta. 83, 1352–1358 (2011)CrossRefPubMedGoogle Scholar
  23. Vashist, S.K.: Continuous glucose monitoring systems: a review. Diagnostics. 3, 385–412 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  24. Vessman, J., Stefan, R.I., van Staden, J.F., Danzer, K., Lindner, W., Burns, D.T., Fajgelj, A., Müller, H.: Selectivity in analytical chemistry. Pure Appl. Chem. 73, 1381–1386 (2001)CrossRefGoogle Scholar
  25. Zumba, J., Rodgers, J., Indest, M.: Fiber micronaire, fineness, and maturity predictions using NIR spectroscopy instruments on seed cotton and cotton fiber, in and outside the laboratory. J. Cotton Sci. 21, 247–258 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alejandro C. Olivieri
    • 1
  1. 1.Universidad Nacional de Rosario, Instituto de Química Rosario - CONICETRosarioArgentina

Personalised recommendations