Skip to main content

Conserving Carbon and Biodiversity Through REDD+ Implementation in Tropical Countries

  • Chapter
  • First Online:
Climate Change, Food Security and Natural Resource Management

Abstract

This article analyses the twin objectives of conserving carbon and biodiversity through results based payments coming from implementation of ‘reducing emissions from deforestation and forest degradation, and the role of conservation, sustainable management of forests, and enhancement of forest carbon stocks’ (collectively known as REDD+) activities in tropical countries. Possible ways to amalgamate the international carbon and biodiversity markets have been explored. Forest carbon stock can be conserved through financing mechanisms under both, compliance and voluntary structures of the carbon market. Most of the tropical countries are developing economies that need capacity building, technology transfer and financial support to efficiently reduce deforestation and conserve biodiversity. Under the New York Declaration on Forests, countries have taken collective voluntary targets to reduce deforestation. An estimation of potential emission reduction from reduced deforestation through voluntary targets in selected tropical countries has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.fws.gov/ventura/docs/hc/conservationbanks.pdf

References

  • Baccini, A., Goetz, S. J., Walker, W. S., et al. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2, 182–185. https://doi.org/10.1038/nclimate1354.

    Article  CAS  Google Scholar 

  • Barlow, J., Lennox, G. D., Ferreira, J., et al. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535, 144–147.

    Article  CAS  Google Scholar 

  • Bekessy, S. A., & Wintle, B. A. (2008). Using Carbon Investment to Grow the Biodiversity Bank. Conservation Biology, 22, 510–513. https://doi.org/10.1111/j.1523-1739.2008.00943.x.

    Article  Google Scholar 

  • CBD. (2009). Biodiversity and climate action.

    Google Scholar 

  • Corlett, R. T., & Primack, R. B. (2011). Many tropical rain forests. In: Tropical rain forests (pp. 1–31). Wiley.

    Google Scholar 

  • Denman, K. L., Brasseur, G., Chidthaisong, A., et al. (2007). Couplings between changes in the climate system and biogeochemistry. New York: Cambridge University Press.

    Google Scholar 

  • Dube, L. C., & Sen, A. (2009). Avoided deforestation coupled with biodiversity banking (p. 118). Raipur: VRM Foundation.

    Google Scholar 

  • Engel, A. (2014). Forest interactions between the CBD and UNFCCC An analysis of forest-related institutional interactions and proactive interaction management between the biodiversity and climate change regimes. MSc Thesis, Wageningen University.

    Google Scholar 

  • FAO. (2006). Global forest resources assessment 2005: Progress towards sustainable forest management. Rome: FAO.

    Google Scholar 

  • FAO. (2007). State of the world’s forests. Rome: FAO.

    Google Scholar 

  • FAO. (2015). Global forest resources assessment 2015. How are the world’s forests changing?

    Google Scholar 

  • Forneri, C., Blaser, J., Jotzo, F., & Robledo, C. (2006). Keeping the forest for the climate’s sake: avoiding deforestation in developing countries under the UNFCCC. Climate Policy, 6, 275–294. https://doi.org/10.1080/14693062.2006.9685602.

    Article  Google Scholar 

  • Hamilton, K., Ricardo, B., Guy, T., Douglas, H. (2007). State of the voluntary carbon market 2007 picking up steam. New Carbon Finance, a service of New Energy Finance Ltd, and Ecosystem Marketplace.

    Google Scholar 

  • Hamrick, K., Goldstein, A. (2015). AHEAD OF THE CURVE: State of the voluntary carbon markets 2015. Forest Trends Ecosystem Marketplace. P. 3.

    Google Scholar 

  • Harris, N. L., Brown, S., Hagen, S. C., et al. (2012). Baseline map of carbon emissions from deforestation in tropical regions. Science, 336, 1573. https://doi.org/10.1126/science.1217962.

    Article  CAS  Google Scholar 

  • Houghton, R. A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus Series B, 55, 378–390. https://doi.org/10.1034/j.1600-0889.2003.01450.x.

    Article  Google Scholar 

  • IPCC. (2014). In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC 151 pp. IPCC.

    Google Scholar 

  • Jantz, P., Goetz, S., & Laporte, N. (2014). Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nature Climate Change, 4, 138–142.

    Article  CAS  Google Scholar 

  • Kindermann, G. E., Obersteiner, M., Rametsteiner, E., & McCallum, I. (2006). Predicting the deforestation-trend under different carbon-prices. Carbon Balance and Management, 1, 15. https://doi.org/10.1186/1750-0680-1-15.

    Article  Google Scholar 

  • Kindermann, G., Obersteiner, M., Sohngen, B., et al. (2008). Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences, 105, 10302–10307. https://doi.org/10.1073/pnas.0710616105.

    Article  Google Scholar 

  • Kissinger, G., Herold, M., de Sy, V. (2012). Drivers of deforestation and forest degradation: A synthesis report for REDD+ policymakers. 48p.

    Google Scholar 

  • Koziell, I., & Swingland, I. R. (2002). Collateral biodiversity benefits associated with “free–market” approaches to sustainable land use and forestry activities. Philosophical Transactions of the Royal Society of London Series A, Mathematical, Physical and Engineering Sciences, 360, 1807. https://doi.org/10.1098/rsta.2002.1033.

    Article  Google Scholar 

  • Kurg, T. (2007). Positive incentives for reducing emissions from deforestation. Cairns: National Institute for Space Research – INPE, Inter-American Institute for Global Change Research – IAI.

    Google Scholar 

  • Milesa, L., Kate, T., Matea, O., et al (undated). REDD+ and the 2020 Aichi biodiversity targets promoting synergies in international forest conservation efforts.

    Google Scholar 

  • Lee D., & Pistorius T. (2015). The impacts of international REDD+ finance.

    Google Scholar 

  • Madsen, B., Becca, N., Nathaniel, C., et al. (2011). Update: State of biodiversity markets. Washington, DC: Forest Trends.

    Google Scholar 

  • Neeff, T., Eichler, L., et al. (2007). Updates on markets for forestry offsets. The FORMA project, CATIE.

    Google Scholar 

  • Norman, M., & Nakhooda, S. (2015). The state of REDD+ finance.

    Google Scholar 

  • Panfil, S. N., Harvey, C. A. (2015). REDD+ and biodiversity conservation: A review of the biodiversity goals, monitoring methods, and impacts of 80 REDD+ projects.

    Google Scholar 

  • Parker, C. (2014). Overview of REDD+ financing landscape, sources and types of funds.

    Google Scholar 

  • Phelps, J., Friess, D. A., & Webb, E. L. (2012a). Win–win REDD+ approaches belie carbon–biodiversity trade-offs. REDD Conserv, 154, 53–60. https://doi.org/10.1016/j.biocon.2011.12.031.

    Article  Google Scholar 

  • Phelps, J., Webb, E. L., & Adams, W. M. (2012b). Biodiversity co-benefits of policies to reduce forest-carbon emissions. Nature Climate Change, 2, 497–503. https://doi.org/10.1038/nclimate1462.

    Article  Google Scholar 

  • Robertson, J. M., & Chan, L. M. (2011). Species richness in a tropical biodiversity hotspot. Journal of Biogeography, 38, 2043–2044. https://doi.org/10.1111/j.1365-2699.2011.02619.x.

    Article  Google Scholar 

  • Santilli, M., Moutinho, P., Schwartzman, S., et al. (2003). Tropical de-forestation and the Kyoto protocol: A new proposal. Milan.

    Google Scholar 

  • Stern, N. H. (2007). The economics of climate change: The Stern review. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Stocker, T. F., Qin, D., Plattner, L. V., Alexander, S. K., Allen, N. L., Bindoff, F.-M., Bréon, J. A., Church, U., Cubasch, S., Emori, P., Forster, P., Friedlingstein, N., Gillett, J. M., Gregory, D. L., Hartmann, E., Jansen, B., Kirtman, R., Knutti, K., Krishna Kumar, P., Lemke, J., Marotzke, V., Masson-Delmotte, G. A., Meehl, I. I., Mokhov, S., Piao, V., Ramaswamy, D., Randall, M., Rhein, M., Rojas, C., Sabine, D., Shindell, L. D., Talley, D. G., Vaughan, & Xie, S.-P. (2013). Technical summary. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Strassburg, B., Turner, R. K., Fisher, B., et al. (2009). Reducing emissions from deforestation – the “combined incentives” mechanism and empirical simulations. Tradit Peoples Climate Change, 19, 265–278. https://doi.org/10.1016/j.gloenvcha.2008.11.004.

    Article  Google Scholar 

  • Streck, C. (2016). Mobilizing finance for + after Paris. Journal of European Environment Plan Law, 13, 146–166. https://doi.org/10.1163/18760104-01302003.

    Article  Google Scholar 

  • Swingland, I. R., Bankoff, G., Frerks, G., Hilhorst, D., Royal Society Staff, et al. (2003). Capturing carbon and conserving biodiversity: The market approach. New York: Routledge, Florence: Taylor & Francis Group [Distributor].

    Google Scholar 

  • UN. (2014). New York declaration on forests (in forests: Action statements and action plans).

    Google Scholar 

  • UNFCCC. (2015). Paris agreement.

    Google Scholar 

  • UNFCCC. (2016). Technical assessment process for proposed forest reference emission levels and/or forest reference levels submitted by developing country parties.

    Google Scholar 

  • UNFCCC, UNCCD, CBD. (2016). Report of the fourteenth meeting of the Joint Liaison Group of the Rio Conventions. Bonn.

    Google Scholar 

  • Warren, R., VanDerWal, J., Price, J., et al. (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3, 678–682.

    Article  Google Scholar 

  • Wolosin, M., Breitfeller, J., & Schaap, B. (2016). The geography of REDD+ finance deforestation, emissions, and the targeting of forest conservation finance. Washington, DC: Forest Trends.

    Google Scholar 

Download references

Disclaimer

Views presented in this article are author’s personal views and do not represent the position of NATCOM project or other departments of the Government of India in whatsoever manner.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dube, L.C. (2019). Conserving Carbon and Biodiversity Through REDD+ Implementation in Tropical Countries. In: Behnassi, M., Pollmann, O., Gupta, H. (eds) Climate Change, Food Security and Natural Resource Management . Springer, Cham. https://doi.org/10.1007/978-3-319-97091-2_15

Download citation

Publish with us

Policies and ethics