Skip to main content

Ecoservice Role of Earthworm (Lumbricidae) Casts in Grow of Soil Buffering Capacity of Remediated Lands Within Steppe Zone, Ukraine

  • Chapter
  • First Online:
Climate Change, Food Security and Natural Resource Management

Abstract

This work is devoted to investigate the ecoservice role of soil saprophages in the formation of sustainable man-made ecosystems under forest plantations. The investigation allowed effect of earthworm casting activities on soil buffering against solution with different pH levels and copper compounds to be detected within the territory remediated after coal mining (Western Donbass, Ukraine). Assays of pH-buffering capacity and copper immobilization/mobilization performed on earthworm casts and artificial remediated soil. Ecosystem effectiveness of soil saprophages (earthworms, Lumbricidae) was shown to be effected on increase of acid-alkaline (pH-buffering) buffering capacity in remediated soil. The study results prove that acid-alkaline buffering capacity of earthworm casts was significantly higher than that of remediated soil and subsoil by 17.9% and 20.8%, respectively. Effectiveness of copper immobilization reflecting degree of soil stability to copper contamination was increased from 23.1% to 39.2%, respectively. Thus, earthworm ecoservice activity had positive changes on environmental conditions of remediated soil and naturalization of artificial edaphotopes within remediated lands in Steppe zone. Environmental quality of remediated soil enriched in earthworm casts was confirmed to be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aira, M., Monroy, F., & DomĂ­nguez, J. (2003). Effects of two species of Earthworms (Allolobophora spp.) on soil systems: A microfaunal and biochemical analysis. Pedobiologia, 47(5–6), 877–881.

    Google Scholar 

  • Aira, M., Lazcano, C., GĂłmez-BrandĂłn, M., et al. (2010). Ageing effects of casts of Aporrectodea caliginosa on soil microbial community structure and activity. Applied Soil Ecology, 46(1), 143–146.

    Article  Google Scholar 

  • Arranz-González, J. C. (2011). Suelos mineros asociados a la minerĂ­a de carbĂłn a cielo abierto en España: una revision. BoletĂ­n GeolĂłgico y Minero, 122(2), 171–186.

    Google Scholar 

  • Atkinson Kendall, E. (1989). An introduction to numerical analysis. New York: Wiley.

    Google Scholar 

  • Behnassi, M., Shahid, S. A., & Gopichandran, R. (2014). Agricultural and food system – Global change nexus: Dynamics and policy implications. In M. Behnassi et al. (Eds.), Science, policy and politics of modern agricultural system (pp. 3–13). Dodrecht: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Böhm, C., Quinkenstein, A., Freese, D., et al. (2009). Kurzumtriebsplantage auf Niederlausitzer Rekultivierungsflächen: Wachstumsverlauf von vierjährigen Robinien. AFZDerWald, 10(64), 532–533.

    Google Scholar 

  • Böhm, C., Quinkenstein, A., Freese, D., et al. (2011). Assessing the short rotation woody biomass production on marginal post-mining areas. Journal of Forest Science, 57(7), 303–311.

    Article  Google Scholar 

  • Bottinelli, N., Henry-des-Tureaux, T., Hallaire, V., et al. (2010). Earthworms accelerate soil porosity turnover under watering conditions. Geoderma, 156(1–2), 43–47.

    Article  Google Scholar 

  • Brygadyrenko, V. V. (2016). Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zoneŃŽ. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(1), 240–248. https://doi.org/10.15421/011630.

    Article  Google Scholar 

  • Butt, K. R., & Lowe, C. N. (2011). Controlled cultivation of endogeic and anecic Earthworms. In A. Karaca (Ed.), Biology of Earthworms (Soil Biology 24) (pp. 107–121). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Chapra, C. S. (2012). Applied numerical methods with MATLAB® for engineers and scientists. New York: McGraw-Hill.

    Google Scholar 

  • Choosai, C., Jouquet, P., Hanboonsong, Y., et al. (2010). Effects of earthworms on soil properties and rice production in the rainfed paddy fields of Northeast Thailand. Applied Soil Ecology, 3(45), 298–303.

    Article  Google Scholar 

  • Cooke, J. A., & Johnson, M. S. (2002). Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environmental Reviews, 10(1), 41–71.

    Article  CAS  Google Scholar 

  • Didur, O., Loza, I., Kul’bachko, Y. (2011). Environmental impact of excretorial activity of earthworms (Lumbricidae) on the buffering capacity of remediated soils. In: Proceeding of NATO ARW “Environmental and Food Security and Safety in Southeast Europe and Ukraine”, Dnipropetrovsk, 16–19 May 2011.

    Google Scholar 

  • Didur, O., Loza, I., Kul’bachko, Y., et al. (2013). Environmental impact of Earthworm (Lumbricidae) excretory activity on pH-buffering capacity of remediated soil. Visnyk of Dnipropetrovsk University. Biology, Ecology, 62, 140–145.

    Google Scholar 

  • Eisenhauer, N. (2010). The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53(6), 343–352. https://doi.org/10.1016/j.pedobi.2010.04.003.

    Article  Google Scholar 

  • Gamkalo, Z. G. (2005). Role of organic fertilizer in optimization of the acid-base properties of gray forest soils of Western forest-steppe zone of Ukraine. Agronomical Chemistry and Soil Science, 66, 53–58.

    Google Scholar 

  • Ilyin, V. B. (1995). Estimation of soils buffering capacity to heavy metal contamination. Agrochemistry, 10, 109–113.

    Google Scholar 

  • Jachimko, B. (2012). The influence of lignite mining on water quality. In K. Voudouris & D. Voutsa (Eds.), Water quality monitoring and assessment (pp. 373–390). Croatia: Publisher InTech. https://doi.org/10.5772/32897.

    Chapter  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.

    Article  Google Scholar 

  • Kul’bachko, Y., Loza, I., Pakhomov, O., et al. (2014). Tropho-methabolic activity of earthworms (Lumbricidae) as zoogenic factor maintaining the stability of remediated soil against copper contamination. Visnyk of Dnipropetrovsk University. Biology, Ecology, 22(2), 104–109.

    Google Scholar 

  • Kul’bachko, Y., Loza, I., Pakhomov, O., et al. (2011). The zooecological remediation of technogen faulted soil in the industrial region of the Ukraine Steppe Zone. In M. Behnassi, A. S. Shahid, & J. D’Silva (Eds.), Sustainable agricultural development: Recent approaches in resources management and environmentally-balanced production enhancement (pp. 115–123). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lavelle, P., DecaĂ«ns, T., Aubert, M., et al. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42(1), 3–15.

    Article  Google Scholar 

  • Milcu, A., Partsch, S., Langel, R., et al. (2006). The response of decomposers (earthworms, springtails and microorganisms) to variations in species and functional group diversity of plants. Oikos, 112(3), 513–524.

    Article  Google Scholar 

  • Mtui, G. Y. S., Mligo, C., Mutakyahwa, M. K. D., et al. (2006). Vegetation structure and heavy metal uptake by plants in the mining-impacted and non mining-impacted sites of Southern Lake Victoria wetlands. Tanzania Journal of Science, 32(2), 39–49.

    Google Scholar 

  • Novitskiy, M. L. (2011). Granulometric composition of fine soil of sulfide solids and man-made substrates of mine piles. Bulletin of the Nikitsky Botanical Garden, 103, 85–87.

    Google Scholar 

  • Orlov, D. S. (1994). Soil ecological monitoring. Moscow: MSU.

    Google Scholar 

  • Orlov, D. S., Sadovnikova, L. K., & Sukhanova, L. I. (2005). Soil chemistry. Moscow: Higher Sch.

    Google Scholar 

  • Pakhomov, A. E., Kulbachko, Y. L., & Didur, O. A. (2009). Study of ecological interrelations of bigeminate-legged millipeds (Diplopoda) and artificial mixed soils as their habitat in experimental conditions. In I. Apostol, D. L. Barry, W. G. Coldewey, & D. W. G. Reimer (Eds.), Optimization of disaster forecasting and prevention measures in the context of human and social dynamics (pp. 163–171). Amsterdam: IOS Press.

    Google Scholar 

  • Pampura, T. V., Pinsky, D. L., Ostroumov, V. E., et al. (1993). Experimental study of buffering capacity of soil at copper and zinc contamination. Eurasian Soil Science+, 25(10), 104–110.

    Google Scholar 

  • Pecharová, E., & Hrabankova, M. (2006). A concept for reconstructing the post-mining region under the Lisbon strategy. EkolĂłgia, 25(3), 194–205.

    Google Scholar 

  • Pecharova, E., Hezina, T., Prochazka, J., et al. (2001). Restoration of spoil heaps in Northwestern Bohemia using wetlands. In J. Vymazal (Ed.), Transformations of nutrients in natural and constructed wetlands (pp. 129–142). Leiden: Backhuys Publishers.

    Google Scholar 

  • Pecharová, E., Martis, M., Kašparová, I., et al. (2011). Environmental approach to methods of regeneration of disturbed landscapes. Journal of Landscape Studies, 4(2), 71–80.

    Google Scholar 

  • Pokarzhevsky, A. D. (1985). Geochemical ecology of terrestrial animals. Moscow: Nauka.

    Google Scholar 

  • Ripl, W., Pokorny, J., Eiseltova, M., et al. (1994). Holistic approach to structure the function of wetlands and their degradation. In M. Eiseltova (Ed.), Restoration of lake ecosystems – A holistic approach (pp. 16–35). Oxford: IWRB Publ.

    Google Scholar 

  • Safonov, A. I. (2005). Phytogeochemistry of copper in man-made environment. Problems of Ecology and Nature Protection of Technogenic Region, 5, 68–74.

    Google Scholar 

  • Singh, A. N., & Singh, J. S. (2006). Experiments on ecological restoration of coal mine spoil using native trees in a dry tropical environment, India: A synthesis. New Forests, 31(1), 25–39. https://doi.org/10.1007/s11056-004-6795-4.

    Article  Google Scholar 

  • Sklenicka, P., Prikryl, I., & Svoboda, I. (2004). Non-productive principles of landscape rehabilitation after long-term opencast mining in north-west Bohemia. Journal-South African Institute of Mining and Metallurgy, 104(2), 83–88.

    Google Scholar 

  • Skousen, J., Sencindiver, J., Owens, K., et al. (1998). Physical properties of minesoils in West Virginia and their influence on wastewater treatment. Journal of Environmental Quality, 27(3), 633–639.

    Article  CAS  Google Scholar 

  • Striganova, B. R. (1980). Feeding of soil saprophages. Moscow: Nauka.

    Google Scholar 

  • Strzyszcz, Z. (1996). Recultivation and landscaping in areas after brown-coal mining in Middle-East European countries. Water Air and Soil Pollution, 91, 145–157.

    Article  CAS  Google Scholar 

  • Thassitou, P. K., & Arvanitoyannis, I. S. (2001). Bioremediation: a novel approach to food waste management. Trends in Food Science & Technology, 12(5–6), 185–196.

    Article  CAS  Google Scholar 

  • Truskavetskiy, R. S. (2003). Buffering capacity of soils and their main functions. Kharkiv: New Word.

    Google Scholar 

  • van Emden, H. (2008). Statistics for terrified biologists. Oxford: Blackwell Publishing.

    Google Scholar 

  • Wang, Y., Dawson, R., Han, D., et al. (2001). Landscape ecological planning and design of degraded mining land. Land Degradation and Development, 12(5), 449–459.

    Article  CAS  Google Scholar 

  • Weiss, N. A. (2012). Introductory statistics. Boston: Addison-Wesley.

    Google Scholar 

  • Zar, J. H. (2010). Biostatistical analysis. Upper Saddle River: Pearson Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazimov, S. et al. (2019). Ecoservice Role of Earthworm (Lumbricidae) Casts in Grow of Soil Buffering Capacity of Remediated Lands Within Steppe Zone, Ukraine. In: Behnassi, M., Pollmann, O., Gupta, H. (eds) Climate Change, Food Security and Natural Resource Management . Springer, Cham. https://doi.org/10.1007/978-3-319-97091-2_13

Download citation

Publish with us

Policies and ethics