Skip to main content

Anaximander’s Numbers

  • Chapter
  • First Online:
When the Earth Was Flat

Part of the book series: Historical & Cultural Astronomy ((HCA))

  • 921 Accesses

Abstract

In 1995, when I discussed several visualizations of Anaximander’s world picture and added my own attempt, I took the interpretation of Anaximander’s numbers by Tannery and Diels for granted. Later, I got my doubts about the right understanding of the doxography on the distances of the heavenly bodies. In 2001, I wrote about my own interpretation: “Even if some parts of this reconstruction might be wrong. I think the conclusion still stands that Anaximander is the originator of the Western world picture or, in other words, the discoverer of space.” In 2003 I wrote: “Any interpretation entailing unacceptable observational consequences that were easy for Anaximander himself to observe must be wrong. In other words, Anaximander’s numbers cannot be in flagrant discrepancy with observational data, for otherwise he would have noticed it.” In 2009, in an article, entitled Problems with Anaximander’s Numbers, I discussed a number of interpretive problems and proposed solutions for understanding them. I concluded that even a symbolical interpretation of the numbers such as “far,” “farther,” “farthest” would not help, because on a flat earth the heavenly bodies are not far away. I tried to save the standard interpretation of the numbers by suggesting that Anaximander did not make a three-dimensional model of his conception of the cosmos. In 2011, this conclusion was repeated, although in Chap. 10 of Heaven and Earth, although I felt increasingly uneasy about it. Since then, my doubts as to whether Anaximander’s numbers as transmitted in the sources are in any of their current interpretations consistent with the conception of the celestial bodies being close by have only become more serious. In this chapter, several interpretations will be discussed and especially one that no longer takes the numbers as indications of distances in the universe but as a kind of calculator for a lunar-solar calendar. At the end of this chapter, I will make up my mind and outline my current position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Couprie (1995).

  2. 2.

    See Tannery (1887, 94–98) and Diels (1897).

  3. 3.

    Couprie (2001, 47), see also Couprie (2003, 238).

  4. 4.

    Couprie (2003, 217).

  5. 5.

    Diogenes Laërtius, Vitae Philosophorum 2.1.1 = DK 12A1 = LM ANAXIMAND. R14 = Gr Axr1 = TP2 Ar92 = KRS 94. Eusebius, Preparatio Evangelica 10.14.11 = DK 12A4 = LM ANAXIMAND. R15 = GR Axr2 = TP2 Ar102; not in KRS. Suda, Lexicon alpha = DK12A2 = Gr Axr4 = TP2 Ar237 = KRS 95. These lines omitted in LM ANAXIMAND. D3.

  6. 6.

    Simplicius, In Aristotelis De Caelo Commentaria 471.1–11 = DK 12A19 = LM ANAXIMAND. R17 = TP2 Ar185, not in Gr and KRS.

  7. 7.

    See, e.g., Kahn (1994, 63): “Anaximander’s concern for the sizes and distances of the heavenly bodies is cited by S(implicius) not from Theophrastus but from the ἀστρολογικὴ ἱστορία of Eudemus.” White (2008, 100): “the sizes and distances of the sun and moon (fr. 146),” and 105: “According to Eudemus (fr. 146), he was the first to specify sizes and distances for the heavenly bodies.” Couprie (2011, 118): “Anaximander was the first to gain insight into the measurements and distances (of the celestial bodies), as Eudemus reports,” repeated at 128–129. Hahn (2010, 60): “Simplicius reports, not on the authority of Theophrastus but rather Eudemus (…), that Anaximander was the first to describe the sizes and distances (…) of the heavenly bodies.” (all italics are mine). See also Gemelli Marciano [2007, 43 (12)].

  8. 8.

    P 2.15.6 (≈S 1.24.1) = DK 12A18 = LM ANAXIMAND. D22 = MR 476 = TP2 Ar55 and 148, not in Gr and KRS.

  9. 9.

    Hippolytus, Refutatio Omnium Haeresium 1.6.5 = DK 12A11(5) = LM ANAXIMAND. D7(6) = GrAxr20(4) = TP2 Ar75(5) = KRS 125.

  10. 10.

    See Couprie (2011, 116–117).

  11. 11.

    P 2.24.2 (=S 1.25.1) = DK 12A21 = LM ANAXIMAND. D25 = Gr Axr24 = MR 563 = TP2 Ar59 and 150; not in KRS.

  12. 12.

    See Simplicius, In Aristotelis De Caelo Commentaria 471.1–11 = DK 12A19 = LM ANAXIMAND. R17 = TP2 Ar185, not in Gr and KRS.

  13. 13.

    This was the title of my contribution to Couprie, Hahn, and Naddaf (2003, 165–254).

  14. 14.

    Pseudo-Plutarch, Stromata 2 = DK 12 A10 = LM ANAXIMAND. D8 = Gr Axr19 = TP2 Ar101 = KRS 122(A).

  15. 15.

    P 2.20.1 (=S 1.25.1) = DK 12A21 = LM ANAXIMAND. D23 = Gr Axr22 = MR 514 = TP2 Ar57 and 150 = KRS 126.

  16. 16.

    P 2.21.1 (≈S 1.25.1) = DK 12A21 = LM ANAXIMAND. D24 = Gr Axr23 = MR 534 = TP2 Ar58 and150 = KRS 127.

  17. 17.

    Hippolytus, Refutatio Omnium Haeresium 1.6.5 = DK 12A11(5) = LM ANAXIMAND. D7(5) = GrAxr20(5) = TP2 Ar75(5) = KRS 125.

  18. 18.

    P 2.25.1 (=S 1.261) = DK 12A22 = LM ANAXIMAND. D26 = Gr Axr25 = MR 572 = TP2 Ar60 and 151; not in KRS, but see p. 136.

  19. 19.

    Qusṭā ibn Lūqā in Daiber (1980, 155), not in DK, LM, Gr, TP2, MR, and KRS, but see Bottler 404, and Thibodeau (2017, 95).

  20. 20.

    Pseudo-Galen, De Historia Philosopha 67.1 = TP2 Ar224, not in DK, LM, Gr, and KRS.

  21. 21.

    Gruppe (1851, 45 n): “Dagegen ist in der Stelle des Origenes (Philos. Cap. 6) [the work, in the mss. ascribed to Origenes, is usually ascribed to Hippolytus, although this ascription is probably also not right, DC], ein offenbarer Fehler, wenn er von die Sonne dieselbe Zahl meldet, aber als Einheit nicht die Erde sondern den Mond nimmt. Röper (1852, 608–609): “(…) und das urtheil Gruppe’s, kosm. Syst. D. griech. S. 45, dass bei unserem verfasser ein fehler obwalte, indem er als einheit anstatt der erde den mond annehme, ist gewiss richtig.” See also Gregory (2016, 261 n. 21), although his explanation of this emendation, “the circle of the sun is now 27 times that of the earth,” (my italics) is dubious.

  22. 22.

    For S 1.25.1, see TP2 Ar150, and cf. Dox. 348. For Eusebius, Preparatio Evangelica 15.23.1, see TP2 Ar105. For pseudo-Galen, De Historia Philosopha 62.1–3, see TP2 Ar221. Both items not in LM, Gr, and KRS.

  23. 23.

    For S 1.25.1, see TP2 Ar150, and cf. Dox. 351. For Eusebius, Preparatio Evangelica 15.24.1, see TP2 Ar106. For pseudo-Galen, De Historia Philosopha 63,1–2, see TP2 Ar222, with a miswriting: πόλος instead of κύκλος. Both items not in LM, Gr, and KRS.

  24. 24.

    Cf. Guthrie (1962, 95): “We may assume that the rings are one earth-diameter thick.”

  25. 25.

    Tannery (1887, 91–92, 119). For a survey of the interpretations, based on Tannery’s suggestion, see Couprie (2011, 121–136). For a more recent survey, see Gregory (2016, 173–192).

  26. 26.

    See Diels (1897, 236), Couprie (2003, 213; 2011, 130).

  27. 27.

    Cf. Tannery (1887, 91): “La double épaisseur du cerceau est ainsi égale au diamètre de la terre;” Diels (1897, 232): “so ist die die Breite dieser Ringe auf einen Erdradius zu veranschlagen.”

  28. 28.

    See KRS, p. 136 n. 1.

  29. 29.

    Diels (1923, 72, my italics). See also Diels (1897, 232). Obviously, Diels has in mind the real distance from the earth to the sun, 149,597,870.7 km, which would equal, given the diameter of the spherical earth of 12,756.32 km, to a distance of 11,727 spherical earth diameters.

  30. 30.

    See Gregory (2016, 173–192).

  31. 31.

    See Claudius Aelianus, Varia Historia 3.17 = DK 12A3 = LM ANAXIMAND. P8 = TP2 Ar 78; not in Gr and KRS, but see p. 105.

  32. 32.

    Diogenes Laërtius, Vitae Philosophorum 2.1.1 = DK 12A1 = LM ANAXIMAND. R14 = Gr Axr1 = TP2 Ar92 = KRS 94: “Anaximander first discovered the gnomon and set one up at the sundials in Sparta, as Favorinus says in his Miscellaneous Studies, to mark solstices and equinoxes; and he constructed hour-indicators.”

  33. 33.

    Cf. Strabo, Geographica 1.1.11 = DK 12A6 = LM ANAXIMAND. D4 = Gr Axr7 = TP2 Ar32 = KRS 99.

  34. 34.

    Cf. Diels (1897, 233).

  35. 35.

    Cf. Burkert (1963, 106–112, esp. 111).

  36. 36.

    Cf. Diels (1897, 232).

  37. 37.

    Hesiod, Theogonia 722–723.

  38. 38.

    Cf. Hesiod, Theogonia 517–520 and 746–747.

  39. 39.

    Cf. Hesiod, Theogonia 778–779.

  40. 40.

    Cf. Diels (1897, 232–233). Diels does not mention here the number 18.

  41. 41.

    See Couprie (2001, 40–41; 2003, 215; 2011, 136).

  42. 42.

    Cf. Gregory (2016, 203): “I take this as a poetic expression of something exceedingly heavy dropping exceedingly fast.”

  43. 43.

    Cf. KRS, p. 136: “His proportionate distances may have influenced Pythagoras.” See also Zhmud (2012, 292).

  44. 44.

    A somewhat problematic solution would be to accept that Anaximander, when measuring the height of the heaven, made a calculation error similar to that of the Chinese astronomers; see Chap. 13.

  45. 45.

    Cf. West (1971, 92).

  46. 46.

    Cf. Eggermont (1973, 124–125)

  47. 47.

    Eggermont (1973, 128).

  48. 48.

    Eggermont (1973, 128, 127).

  49. 49.

    See Hahn (2001, passim, and especially 156, 158, and 78).

  50. 50.

    For an extensive criticism of Hahn’s attempt, see Couprie and Pott (2002) and Couprie (2011), Chap. 12.

  51. 51.

    See Couprie and Pott (2002), and Couprie (2011, 153–160).

  52. 52.

    Naddaf (1998, 23).

  53. 53.

    Gregory (2016, 74; see also 123): “Anaximander’s system has a strong tendency to symmetry.”

  54. 54.

    Gregory (2016, 124).

  55. 55.

    Gregory (2016, 164).

  56. 56.

    Gregory (2016, 184, my italics). With “this sequence” Gregory means: “the aesthetically pleasing sequence of 9, 18, 27, which can be seen as an extension of the 3:1 ratio of the earth’s width to its depth” (2016, 173).

  57. 57.

    O’Brien (1967, 427).

  58. 58.

    See Corre (2013).

  59. 59.

    O’Brien (1967, 423, n. 4).

  60. 60.

    Cf. O’Brien (1967, 425).

  61. 61.

    Cf. Apuleius, Florida 18.32 = DK 11A19 = LM THALES R13 = TP1 Th178; not in Gr and KRS. See also Diogenes Laërtius, Vitae Philosophorum 1.24 = DK 11A1(24) = LM THALES R14 = Gr Ths1(24) = TP1 Th237(24); not in KRS, but see p. 83.

  62. 62.

    Röper (1852, 608): “(…) nachrichten, wonach Anaximander den kreis der sonne 28 mal oder, vermuthlich nach abzug des der ἐκπνοὴ zukommenden raumes, 27 mal, den kreis des mondes aber 19 mal grosser sein liess als die erde.” Röper does not mention a number 18 for the moon wheel minus its ἐκπνοὴ.

  63. 63.

    Cf. Gregory (2016, 169–219). Exceptions are O’Brien (1967, 423, n. 4) and Naddaf (2001, 11).

  64. 64.

    Conche (1991, 209, my italics).

  65. 65.

    Naddaf (2001, 11). The total number of disks should be 28, as Forbiger’s text (1877, 523, n. 57) shows. It is not clear to me, why Naddaf calls this “an obvious petitio principii argument.”

  66. 66.

    Cf. Graham (2013, 58): “the ring of the sun (…) one earth-diameter in thickness.” See also his drawing at 59, Fig. 2.1. Graham’s drawing is, however, strange in two other aspects: the heavenly wheels are not tilted but lie in the same plane as the earth, as if the situation before the tilt of the celestial axis is rendered, and only one wheel for the stars is drawn.

  67. 67.

    Kahn (1994, 87–88).

  68. 68.

    Kahn (1994, 88).

  69. 69.

    Dicks (1970, 46–47).

  70. 70.

    Cf. Fehling (1985, 222).

  71. 71.

    Cf. Stritzinger (1952, 65–66).

  72. 72.

    Thibodeau (2017, 99).

  73. 73.

    Thibodeau (2017, 102).

  74. 74.

    Rescher (2014).

  75. 75.

    Cf. Thibodeau (2017, 103, 106).

  76. 76.

    Thibodeau (2017, 99, n. 26).

  77. 77.

    Thibodeau (2017, 110).

  78. 78.

    See Forbiger (1877, 523 n. 57): “Diese verschiedenen Angaben lassen sich wohl so erklären, dass Anaxim. den Luftkreis, der den eigentlichen Kern der Sonnen umgab, für 27 mal, also den Kern und den Lichtkreis zusammen, oder die ganze Sonne, für 28 mal grösser als die Erde hielt.”

  79. 79.

    See Hahn (2010, 162, Fig. 6.11).

  80. 80.

    See Couprie (2011, 109–110).

  81. 81.

    Cf. Kočandrle (2017, 2018).

  82. 82.

    P = Aëtius in pseudo-Plutarch, Placita (numbering according to Dox).

    S = Aëtius in Stobaeus, Anthologium (numbering according to Wachsmuth and Hense).

References

P = Aëtius in pseudo-Plutarch, Placita (numbering according to Dox).

S = Aëtius in Stobaeus, Anthologium (numbering according to Wachsmuth and Hense).

  • Bottler, H., Pseudo-Plutarch und Stobaios: Eine synoptische Untersuchung. Göttingen: Vandenhoeck & Ruprecht 2014.

    Book  Google Scholar 

  • Burkert, W., Iranisches bei Anaximander. Rheinisches Museum für Philologie 106 (1963), 97–134.

    Google Scholar 

  • Conche, M., Anaximandre. Fragments et Témoignages. Paris: Presses Universitaires de France 1991.

    Google Scholar 

  • Corre, J.-F., Proportions du ciel d’Anaximandre. Phronesis 58 (2013), 1–16.

    Article  Google Scholar 

  • Couprie, D.L., The Visualization of Anaximander’s Astronomy. Apeiron 28 (1995), 159–181.

    Article  Google Scholar 

  • ―, Anaximander’s Discovery of Space. In: A. Preus, ed., Before Plato. Essays in Ancient Greek Philosophy VI. Albany: State University of New York Press 2001, 23–48.

    Google Scholar 

  • ―, The Discovery of Space: Anaximander’s Astronomy. In: Couprie, D.L., R. Hahn and G. Naddaf, Anaximander in Context New Studies in the Origins of Greek Philosophy. Albany: State University of New York Press 2003, 165–254.

    Google Scholar 

  • ―, Heaven and Earth in Ancient Greek Cosmology. New York: Springer 2011.

    Google Scholar 

  • Couprie, D.L. and H.J. Pott, Imagining the Universe. Apeiron 35 (2002), 47–59.

    Article  Google Scholar 

  • Dicks, D.R., Early Greek Astronomy to Aristotle. Ithaca N.Y.: Thames and Hudson 1970.

    Google Scholar 

  • Diels, H., Doxographi Graeci. Berlin: Walter de Gruyter 1879 (=Dox).

    Google Scholar 

  • ―, Über Anaximander’s Kosmos. Archiv für Geschichte der Philosophie 10 (1897), 228–237.

    Google Scholar 

  • ―, Anaximandros von Milet. Neue Jahrbücher für das klassische Altertum 51 (1923), 65–76.

    Google Scholar 

  • Diels, H. and W. Kranz, Die Fragmente der Vorsokratiker. Zürich/Hildesheim: Weidmann 19516 (=DK).

    Google Scholar 

  • Eggermont, P.H.L., The Proportions of Anaximander’s Celestial Globe and the Gold-Silver Ratio of Croesus’ Coinage. In M.A. Beek et al., eds., Symbolae Biblicae et Mesopotamicae Francisco Mario Theodoro De Liagre Böhl Dedicatae. Leiden: E.J. Brill 1973, 118–128.

    Google Scholar 

  • Fehling, D., Das Problem der Geschichte des griechischen Weltmodells vor Aristoteles. Rheinisches Museum für Philologie 128 (1985), 195–231.

    Google Scholar 

  • Forbiger, A., Handbuch der alten Geographie. Hamburg: Haencke und Lehmkuhl 1842 (quoted from the second edition, 1877). Available on the Internet: https://archive.org/stream/handbuchderalten01forb#page/n0/mode/2up.

  • Gemelli Marciano, M.L., Die Vorsokratiker (3 Bände). Düsseldorf: Artemis & Winkler 2007–2013.

    Google Scholar 

  • Graham, D.W., The Texts of Early Greek Philosophy. Cambridge: Cambridge University of Press 2010 (=Gr).

    Google Scholar 

  • ―, Science Before Socrates. Oxford: University Press 2013.

    Google Scholar 

  • Gregory, A., Anaximander, A Re-assessment. London: Bloomsbury 2016.

    Google Scholar 

  • Gruppe, O.F., Die kosmischen Systeme der Griechen. Berlin: Verlag von G. Reimer 1851. Available on the Internet: https://www.google.nl/?gfe_rd=cr&dcr=0&ei=o6SJWpbgENCGgAaloqigBw.

  • Guthrie, W.K.C., A History of Greek Philosophy. Volume I. The Earlier Presocratics and Pythagoras. Cambridge: Cambridge University Press 1962.

    Google Scholar 

  • Hahn, R., Anaximander and the Architects. Albany: SUNY 2001.

    Google Scholar 

  • ―, Archaeology and the Origins of Philosophy. Albany: SUNY 2010.

    Google Scholar 

  • Kahn, C.H., Anaximander and the Origins of Greek Cosmology. Indianapolis/Cambridge Hackettt Publishing Company, Inc. 1994.

    Google Scholar 

  • Kirk, G.S., J.E. Raven and M. Schofield, The Presocratic Philosophers. Cambridge: Cambridge University Press 2009 (=KRS).

    Google Scholar 

  • Kočandrle, R., The Stability of the Earth in Anaximander’s Universe. Ancient Philosophy 37 (2017), 265–280.

    Article  Google Scholar 

  • ―, Explaining Earth’s Stability by Uniformity: Origins of the Argument. Apeiron 2018 (published online first: https://www.degruyter.com/printahead/j/apeiron).

  • Laks, A. and G.W. Most, Early Greek Philosophy VI, Cambridge, MA 2016.

    Google Scholar 

  • Mansfeld, J. and D.T. Runia, Aëtiana. The Method and Intellectual Context of a Doxographer, Volume Two, Part Two. Leiden: Brill 2009 (=MR).

    Google Scholar 

  • Naddaf G., On the Origin of Anaximander’s Cosmological Model. Journal of the History of Ideas 59 (1998), 1–28.

    Article  Google Scholar 

  • ―, Anaximander’s Measurements Revisited. In: A. Preus (ed.), Essays in Ancient Greek Philosophy VI: Before Plato. Albany: SUNY 2001, 5–21.

    Google Scholar 

  • O’Brien, D., Anaximander’s Measurements. The Classical Quarterly 17 (1967), 423–432.

    Article  Google Scholar 

  • Rescher, N., Anaximander and the Antikythera Mechanism. http://philsci-archive.pitt.edu/3078/ (Januari 2, 2014).

  • Röper, W., Emendationsversuche zu Hippolyti philosophumena. Philologus 7 (1852), 606–637. Available on the Internet: https://archive.org/stream/philologus07deutuoft#page/606/mode/2up.

  • Stritzinger, H.-W., Untersuchungen zu Anaximander. Inaugural-Dissertation Mainz 1952.

    Google Scholar 

  • Tannery, P., Pour l’histoire de science Hellène: de Thalès à Empédocle. Paris: Félix Alcan 1887.

    Book  Google Scholar 

  • Thibodeau, P., Anaximander’s Model and the Measures of the Sun and Moon. Journal of Hellenic Studies 137 (2017), 92–111.

    Article  Google Scholar 

  • West, M.L., Early Greek Philosophy and the Orient. Oxford: Clarendon Press 1971.

    Google Scholar 

  • White, S.A., Milesian Measures: Space, Time, and Matter. In: P. Curd and D. Graham, (eds.), The Oxford Handbook of Presocratic Philosophy. Oxford: Oxford University Press 2008, 89–133.

    Google Scholar 

  • Wöhrle, G., Traditio Praesocratica. Die Milesier: Thales. Berlin: Walter de Gruyter 2009 (=TP1).

    Google Scholar 

  • ―, Traditio Praesocratica. Die Milesier: Anaximander und Anaximenes. Berlin: Walter de Gruyter 2012 (=TP2).

    Google Scholar 

  • Zhmud, L., Pythagoras and the Early Pythagoreans. Oxford: University Press 2012.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Couprie, D.L. (2018). Anaximander’s Numbers. In: When the Earth Was Flat. Historical & Cultural Astronomy. Springer, Cham. https://doi.org/10.1007/978-3-319-97052-3_6

Download citation

Publish with us

Policies and ethics