Skip to main content

Mapping Aboveground Biomass of Trees Using Forest Inventory Data and Public Environmental Variables within the Alaskan Boreal Forest

Abstract

A method for mapping forest biomass was developed and tested on a study area in the boreal forest of interior Alaska. In order to understand above ground biomass values within this forest, we employed the Boruta algorithm, Random Forest (RF), and Classification and Regression Tree (CART) analysis (three different machine learning techniques) to predict above ground woody biomass for the entire region using a combination of forest inventory data and a suite of 32 predictors from public open-access data archives that included spectral reflectance, climatic, soil, distance from various features, and topographic variables. We also developed prediction maps at a 1km2 resolution for aboveground woody biomass. The method employed here yielded good accuracy for the huge Alaskan landscape despite the rather limited training set. The results indicate that the geographic patterns of biomass are strongly influenced by the tree size class diversity which contributed of a given stand.

Keywords

  • Predictive mapping
  • Aboveground forest biomass
  • Random forest
  • Regression tree analysis
  • Alaska
  • Boreal forest

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-96978-7_7
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-96978-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6

References

  • Alaska Energy Authority 2015 Alaska wood energy development task force project status; AWEDTG_Status_081315_8.511; AEA: Anchorage, AK, USA, 2015

    Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157(2–3):101–118

    CrossRef  Google Scholar 

  • Baccini A, Friedl MA, Woodcock CE, Warbington R (2004) Forest biomass estimation over regional scales using multisource data. Geophys Res Lett 31(10):L10501

    CrossRef  Google Scholar 

  • Baccini A, Laporte N, Goetz SJ, Sun M, Dong H (2008) A first map of tropical Africa's above-ground biomass derived from satellite imagery. Environ Res Lett 3(4):045011

    CrossRef  Google Scholar 

  • Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. J For 64:691–692

    Google Scholar 

  • Bivand RS, Anselin L, Berke O et al (2007) Spdep: spatial dependence: weighting schemes, statistics and models. R package version 0.4-9

    Google Scholar 

  • Blackard J, Finco M, Helmer E et al (2008) Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens Environ 112(4):1658–1677

    CrossRef  Google Scholar 

  • Bonnor G (1985) Inventory of forest biomass in Canada. Canadian Forestry Service, Environment Canada, Forestry Statistics and Systems Branch, Ontario

    Google Scholar 

  • Botkin DB, Simpson LG (1990) Biomass of the North-American boreal forest - a step toward accurate global measures. Biogeochemistry 9(2):161–174

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    CrossRef  Google Scholar 

  • Chapin FS III, Hollingsworth T, Murray DF, Viereck LA, Walker MD (2006) Floristic diversity and vegetation distribution in the Alaskan boreal forest. In: Chapin FS III, Oswood M, Van Cleve K, Viereck LA, Verbyla D (eds) Alaska’s changing boreal forest. Oxford University Press, New York, pp 81–99

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. John Wiley & Sons, New York

    Google Scholar 

  • Curtis RO (1983) Procedures for establishing and maintaining permanent plots for silvicultural and yield research. p 56. Gen Tech Rep PNW-155. U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland

    Google Scholar 

  • Cushman S, Huettmann F (eds) (2010) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo

    Google Scholar 

  • Cushman SA, McKelvey KS (2009) Data on distribution and abundance: monitoring for research and management. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo, pp 111–129

    Google Scholar 

  • Cutler DR, Edwards TC Jr, Beard KH et al (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792

    CrossRef  Google Scholar 

  • De'ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192

    CrossRef  Google Scholar 

  • Drew CA, Wiersma YF, Huettmann F (eds) (2011) Predictive species and habitat modeling in landscape ecology: concepts and applications. Springer Verlag, New York

    Google Scholar 

  • ESRI (2011) Arc GIS desktop: release 10. Environmental Systems Research Institute, Redlands,CA

    Google Scholar 

  • Fassnacht KS, Cohen WB, Spies TA (2006) Key issues in making and using satellite-based maps in ecology: a primer. For Ecol Manag 222(1–3):167–181

    CrossRef  Google Scholar 

  • Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodivers Conserv 11(12):2275–2307

    CrossRef  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19(4):474–499

    CrossRef  Google Scholar 

  • Fresco N (2006) Carbon sequestration in Alaska’s boreal forest: planning for resilience in a changing landscape. PhD dissertation. University of Alaska Fairbanks

    Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Annals Stat 29(5):1189–1232

    CrossRef  Google Scholar 

  • GAO (2005) Natural resources. Federal Agencies are Engaged in various efforts to promote the utilization of Woody biomass, but significant obstacles to its use remain. United States Government Accountability Office, Washington, DC

    Google Scholar 

  • Grossmann E, Ohmann J, Kagan J, May H, Gregory M (2010) Mapping ecological systems with a random forest model: tradeoffs between errors and bias. USGS Gap Analysis Bulletin:16–22

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    CrossRef  Google Scholar 

  • Harper K, Boudreault C, DeGrandpré L, Drapeau P, Gauthier S, Bergeron Y (2003) Structure, composition, and diversity of old-growth black spruce boreal forest of the Clay Belt region in Quebec and Ontario. Environ Rev 11(S1):S79–S98

    CrossRef  Google Scholar 

  • Harrell PA, Bourgeau Chavez LL, Kasischke ES, French NHF, Christensen NL (1995) Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest. Remote Sens Environ 54(3):247–260

    CrossRef  Google Scholar 

  • Hothorn T, Hornik K, Zeileis A (2006a) Party: a laboratory for recursive part (y)itioning. http://CRAN.R-project.org/

    Google Scholar 

  • Hothorn T, Hornik K, Zeileis A (2006b) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15(3):651–674

    CrossRef  Google Scholar 

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Change Biol 11(6):945–958

    CrossRef  Google Scholar 

  • Iverson LR, Prasad AM (2001) Potential changes in tree species richness and forest community types following climate change. Ecosystems 4(3):186–199

    CrossRef  CAS  Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. For Sci 49(1):12–35

    Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2004) Comprehensive database of diameter-based biomass regressions for north American tree species. US Dept. of Agriculture, Forest Service, Northeastern Research Station, Delaware

    CrossRef  Google Scholar 

  • Jenness J (2006) Topographic position index (tpi_jen.avx) extension for Arcview 3.x, v. 1.3a. http://www.jennessent.com/arcview/tpi.htm, Jenness Enterprises [EB/OL]

  • Johnson KD, Harden J, McGuire AD et al (2011) Soil carbon distribution in Alaska in relation to soil-forming factors. Geoderma 167-68(0):71–84

    CrossRef  Google Scholar 

  • Kneeshaw D, Gauthier S (2003) Old growth in the boreal forest: a dynamic perspective at the stand and landscape level. Environ Rev 11(S1):S99–S114

    CrossRef  Google Scholar 

  • Kohyama T (1993) Size-structured tree populations in gap-dynamic Forest - the Forest architecture hypothesis for the stable coexistence of species. J Ecol 81(1):131–143

    CrossRef  Google Scholar 

  • Kursa MB, Rudnicki WR (2010) Feature selection with the boruta package. J Stat Softw 36(11):1–13

    CrossRef  Google Scholar 

  • Lamsal S, Rizzo DM, Meentemeyer RK (2012) Spatial variation and prediction of forest biomass in a heterogeneous landscape. J For Res 23(1):13–22

    CrossRef  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation-trouble or new paradigm. Ecology 74(6):1659–1673

    CrossRef  Google Scholar 

  • Li J, Heap AD, Potter A, Daniell JJ (2011) Application of machine learning methods to spatial interpolation of environmental variables. Environ Model Softw 26(12):1647–1659

    CrossRef  Google Scholar 

  • Liang JJ (2010) Dynamics and management of Alaska boreal forest: an all-aged multi-species matrix growth model. For Ecol Manag 260(4):491–501

    CrossRef  Google Scholar 

  • Liang JJ, Zhou M (2010) A geospatial model of forest dynamics with controlled trend surface. Ecol Model 221(19):2339–2352

    CrossRef  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and Regression by random forest. R News 2(3):18–22

    Google Scholar 

  • Lloyd AH, Fastie CL (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Chang 52(4):481–509

    CrossRef  Google Scholar 

  • Loeffler D, Brandt J, Morgan T, Jones G (2010) Forestry based biomass economic and financial information and tools: an annotated bibliography. Gen Tech Rep RMRS-GTR-244WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station., p 52

    Google Scholar 

  • Magness D, Huettmann F, Morton J (2008) Using random forests to provide predicted species distribution maps as a metric for ecological inventory & monitoring programs. In: Smolinski T, Milanova M, Hassanien AE (eds) Applications of computational intelligence in biology, studies in computational intelligence, vol 122. Springer, Berlin, pp 209–229

    CrossRef  Google Scholar 

  • Major J (1951) A functional, factorial approach to plant ecology. For Ecol Manag 32:392–412

    CrossRef  Google Scholar 

  • Malone T, Liang J, Packee EC (2009) Cooperative Alaska forest inventory. Gen Tech Rep PNW-GTR-785. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station

    Google Scholar 

  • McCarthy J (2001) Gap dynamics of forest trees: a review with particular attention to boreal forests. Environ Rev 9(1):1–59

    CrossRef  Google Scholar 

  • McRoberts RE, Winter S, Chirici G et al (2008) Large-scale spatial patterns of forest structural diversity. Can J For Res-Rev Can Rech For 38(3):429–438

    CrossRef  Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91(1):252–261

    CrossRef  Google Scholar 

  • Niemelä J (1999) Management in Relation to disturbance in the boreal Forest. For Ecol Manag 115:127–134

    CrossRef  Google Scholar 

  • O’Neill RV, Hunsaker CT, Jones KB et al (1997) Monitoring environmental quality at the landscape scale. Bioscience 47(8):513–519

    CrossRef  Google Scholar 

  • Ogden AE, Innes JL (2009) Application of structured decision making to an assessment of climate change vulnerabilities and adaptation options for sustainable forest management. Ecol Soc 14(1):11

    CrossRef  Google Scholar 

  • Ohse B, Huettmann F, Ickert-Bond SM, Juday GP (2009) Modeling the distribution of white spruce (Picea glauca) for Alaska with high accuracy: an open access role-model for predicting tree species in last remaining wilderness areas. Polar Biol 32(12):1717–1729

    CrossRef  Google Scholar 

  • Parmentier I, Harrigan RJ, Buermann W et al (2011) Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. J Biogeogr 38(6):1164–1176

    CrossRef  Google Scholar 

  • Powell SL, Cohen WB, Healey SP et al (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens Environ 114(5):1053–1068

    CrossRef  Google Scholar 

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9(2):181–199

    CrossRef  Google Scholar 

  • Pretzsch H (2005) Diversity and productivity in forests: evidence from long-term experimental plots. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Springer-Verlag, Berlin Heidelberg, pp 41–64

    CrossRef  Google Scholar 

  • Ruefenacht B, Finco MV, Nelson MD et al (2008) Conterminous US and Alaska Forest type mapping using forest inventory and analysis data. Photogramm Eng Remote Sens 74(11):1379–1388

    CrossRef  Google Scholar 

  • Scherer-Lorenzen M, Körner C, Schulze E-D (2005) Forest diversity and function: temperate and boreal systems. Springer Verlag, Berlin/Heidelberg

    CrossRef  Google Scholar 

  • Schimel DS, House JI, Hibbard KA et al (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414(6860):169–172

    CrossRef  CAS  Google Scholar 

  • Schulze ED, Wirth C, Mollicone D, Ziegler W (2005) Succession after stand replacing disturbances by fire, wind throw, and insects in the dark taiga of Central Siberia. Oecologia 146(1):77–88

    CrossRef  Google Scholar 

  • Siroky DS (2009) Navigating Random Forests and related advances in algorithmic modeling. Statistics Surveys 3:147–163

    CrossRef  Google Scholar 

  • Sokal R, Oden N (1978) Spatial autocorrelation in biology 1. Methodology. Biol J Linn Soc 10(2):199–228

    CrossRef  Google Scholar 

  • Stage AR, Salas C (2007) Interactions of elevation, aspect, and slope in models of forest species composition and productivity. For Sci 53(4):486–492

    Google Scholar 

  • van Cleve K, Dyrness CT, Viereck LA, Fox J, Chapin FS, Oechel W (1983) Taiga ecosystems in interior Alaska. Bioscience 33(1):39–44

    CrossRef  Google Scholar 

  • Viereck L, Little E (2007) Alaska trees and shrubs. University of Alaska Press, Fairbanks

    Google Scholar 

  • Vogelmann JE, Helder D, Morfitt R, Choate MJ, Merchant JW, Bulley H (2001) Effects of landsat 5 thematic mapper and Landsat 7 enhanced thematic mapper plus radiometric and geometric calibrations and corrections on landscape characterization. Remote Sens Environ 78(1–2):55–70

    CrossRef  Google Scholar 

  • Walsh JE, Chapman WL, Romanovsky V, Christensen JH, Stendel M (2008) Global climate model performance over Alaska and Greenland. J Clim 21(23):6156–6174

    CrossRef  Google Scholar 

  • Wilmking M, Juday GP 2005 Longitudinal variation of radial growth at Alaska’s northern treeline - recent changes and possible scenarios for the 21st century. In, 2005. Elsevier Science Bv, pp 282–300

    Google Scholar 

  • Wurtz TL, Ott RA, Maisch JC (2006) Timber harvest in interior Alaska. In: Chapin FS III, Oswood M, Van Cleve K, Viereck L, Verbyla D (eds) Alaska's changing boreal Forest. Oxford University Press, New York, pp 302–308

    Google Scholar 

  • Yarie J (2008) Effects of moisture limitation on tree growth in upland and floodplain forest ecosystems in interior Alaska. For Ecol Manag 256(5):1055–1063

    CrossRef  Google Scholar 

  • Yarie J, Billings S (2002) Carbon balance of the taiga forest within Alaska: present and future. Can J For Res-Rev Can Rech For 32(5):757–767

    CrossRef  Google Scholar 

  • Yarie J, Mead D (1982) Aboveground tree biomass on productive forest land in Alaska. Res Pap PNW-RP-298. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 16 p

    Google Scholar 

  • Yarie J, Kane E, Mack MC (2007) Aboveground biomass equations for trees of interior Alaska. Agricultural and Forestry Experiment Station Bulletin. Univesity of Alaska Fairbanks, Fairbanks

    Google Scholar 

  • Young BD, Liang J, Chapin FS (2011) Effects of species and tree size diversity on recruitment in the Alaskan boreal forest: a geospatial approach. For Ecol Manag 262(8):1608–1617

    CrossRef  Google Scholar 

  • Young BD, Yarie J, Verbyla D, Huettmann F, Herrick K, Chapin FS (2017) Modeling and mapping forest diversity in the boreal forest of interior Alaska. Landsc Ecol 32: 397–413

    CrossRef  Google Scholar 

Download references

Acknowledgments

We thank Douglas Hanson for his valuable comments and insights. The authors also thank Thomas Malone and Dan Rees and their field assistants for collecting and compiling all the forest inventory data. Support for this work was provided by the National Science Foundation, through its Integrative Graduate Education and Research Traineeship (IGERT, NSF 0114423) to the Resilience and Adaptation Program (RAP) at the University of Alaska Fairbanks; and the State of Alaska Department of Natural Resources Division of Forestry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Young, B.D., Yarie, J., Verbyla, D., Huettmann, F., Stuart Chapin, F. (2018). Mapping Aboveground Biomass of Trees Using Forest Inventory Data and Public Environmental Variables within the Alaskan Boreal Forest. In: Humphries, G., Magness, D., Huettmann, F. (eds) Machine Learning for Ecology and Sustainable Natural Resource Management. Springer, Cham. https://doi.org/10.1007/978-3-319-96978-7_7

Download citation