Skip to main content

Archaea: Ecology, Application, and Conservation

  • Chapter
  • First Online:
Book cover Microbial Resource Conservation

Part of the book series: Soil Biology ((SOILBIOL,volume 54))

Abstract

Archaea are the inhabitants of extreme environments on the earth. They commonly live at extreme acidity, temperature, and alkalinity or in hypersaline water, hot springs, hydrothermal vents, and glaciers and at extreme pressure and radiation. Some of the members live in deep oceans at extreme pressure and temperature above 100 °C. With the advancement of archaeal taxonomy, diversity, and identification of new strains, their functional role has increased in industrial and biotechnological applications in recent years. The extremophilic archaea are well-known sources of extracellular enzymes and biocatalyst and accelerate fermentation process. Some novel antimicrobial compounds and biomolecules have been discovered in certain archaea. Many of archaeal strains have applications in eco-friendly wastewater treatment plants, biodegradation of marshy lands contaminated with organic solvents, and hydrocarbons. In mineralization process, ammonia-oxidizing archaea (AOA) has key role in nitrogen cycle. The long-term preservation of extremely halophilic and thermoacidophilic archaea has been reported successful by L-drying method but it is labile to freeze and freeze-drying. Viability of thermoacidophilic archaea like Thermoplasma sustained at 5 °C for more than 15 years. The halophilic archaea may be preserved in the Petri dishes or in the refrigerator at 4 °C for quite longer periods with proper sealing and in deep freezing at −80 °C with specific media at proper salt concentration in 20% supplemented glycerol. In the case of hyperthermophilic archaea like Pyrococcus furiosus, the glass capillary tube kept over liquid nitrogen with dimethyl sulfoxide is preferred. The lyophilization method of preservation generally results in loss of viability in most of archaea cultures. Likewise, in situ methods of conservation of archaea in their natural habitats become noteworthy since most of archaea are extremophiles in those particular habitats with unique characteristics and specific traits with several applications. Hence, preservation of archaea requires specific preservation techniques for certain groups, and therefore, it is important to be focused on their maintenance, preservation, and conservation. Hence, it is very important for the development of reliable, simple, and durable preservation technique for particular groups of archaea for long-term preservation with stable viability for over the years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agogue H, Brink M, Dinasquet J, Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456:788–791

    Article  CAS  Google Scholar 

  • Aislabie J, Bowman JP (2010) Archaeal diversity in Antarctic ecosystems. In: Bej AK, Aislabie J, Atlas RM (eds) Polar microbiology: the ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. CRC Press, Boca Raton, FL, pp 31–61

    Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328

    Article  CAS  Google Scholar 

  • Arab H, Volker H, Thomm M (2000) Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. Int J Syst Evol Microbiol 50:2101–2108

    Article  Google Scholar 

  • Aravalli RN, She Q, Garrett RA (1998) Archaea and the new age of microorganisms. Trends Ecol Evol 13:190–194

    Article  CAS  Google Scholar 

  • Bhattad UH (2012) Preservation of methanogenic cultures to enhance anaerobic digestion. Dissertations (2009). Paper 209. http://epublications.marquette.edu/dissertations_mu/209

  • Birrien JL, Zeng X, Jebbar M, Cambon-Bonavita MA, Quérellou J, Oger P, Bienvenu N, Xiao X, Prieur D (2011) Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2831

    Article  CAS  Google Scholar 

  • Blochl E, Rachel R, Burggraf S, Hafendradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21

    Article  CAS  Google Scholar 

  • Bonfa MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Article  CAS  Google Scholar 

  • Boone DR, Castenholz RW (2001) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, Berlin, Heidelberg

    Book  Google Scholar 

  • Breithaupt H (2001) The hunt for living gold. The search for organisms in extreme environments yields useful enzymes for industry. EMBO Rep 2:968–971

    Article  CAS  Google Scholar 

  • Brochier C (2005) Nanoarchaea: representatives of a novel archaeal phylum or a fast evolving euryarchaeal lineage related to Thermococcales. Genome Biol 6:R42

    Article  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  Google Scholar 

  • Bullock C (2000) The Archaea- a biochemical perspective. Biochem Mol Biol Edu 28:186–191

    CAS  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol Lett 238:469–473

    CAS  PubMed  Google Scholar 

  • Ciaramella M, Napoli A, Rossi M (2005) Another extreme genome: how to live at pH0. Trends Microbiol 13:49–51

    Article  CAS  Google Scholar 

  • Connaris H, Cowan D, Ruffett M, Sharp RJ (1991) Preservation of the hyperthermophile Pyrococcus furiosus. Lett Appl Microbiol 13:25–27

    Article  Google Scholar 

  • DasSarma S, Fleischmann EM, Rodriguez-Valera F (1995) Appendix 2: media for halophiles. In: DasSarma S, Fleischmann EM (eds) Archaea. A laboratory manual. Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 225–230

    Google Scholar 

  • Davies PC (1996) The transfer of viable microorganisms between planets. Ciba Found Symp 202:304–314

    CAS  PubMed  Google Scholar 

  • Dawson S, DeLong EF, Pace NR (2006) Phylogenetic and ecological perspectives on uncultured Crenarchaeota and Korarchaeota. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 3, 3rd edn. Springer, New York

    Google Scholar 

  • DeLong EF (1998) Everything in moderation: Archaea as ‘non-extremophiles. Curr Opin Genet Dev 8:649–654

    Article  CAS  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of bacteria and Archaea. Syst Biol 50:470–478

    Article  CAS  Google Scholar 

  • DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:33642

    Article  Google Scholar 

  • Dyall-Smith M (2009) The halohandbook – protocols for haloarchaeal genetics. Available online at: http://www.haloarchaea.com/resources/halohandbook/index.html.(Accessioned on 02.11.2017)

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    Article  CAS  Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8:649–655

    Article  CAS  Google Scholar 

  • Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlundg BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Goltsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Nat Acad Sci USA 105:8102–8107

    Article  CAS  Google Scholar 

  • Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    Article  CAS  Google Scholar 

  • Fitz-Gibbon ST, House CH (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27:4218–4222

    Article  CAS  Google Scholar 

  • Forterre P (1997) Archaea: what can we learn from their sequences? Curr Opin Genet Dev 7:764–770

    Article  CAS  Google Scholar 

  • Forterre P, Philippe H (1999) Where is the root of the universal tree of life? Bioassay 21:871–879

    Article  CAS  Google Scholar 

  • Forterre P, Bouthier De La Tour C, Philippe H, Duguet M (2000) Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from Archaea to bacteria. Trends Genet 16:152–154

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  Google Scholar 

  • Galand PE, Lovejoy C, Pouliot J, Vincent WF (2008) Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem. J Marine Syst 74:774–782

    Article  Google Scholar 

  • Giovannoni SJ, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 427:343–348

    Article  Google Scholar 

  • Godfroy A, Meunier JR, Guezennec J, Lesongeur F, Raguenes G, Rimbault A, Barbier G (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji basin. Int J Syst Bacteriol 46:1113–1119

    Article  CAS  Google Scholar 

  • Grant WD, Larsen H (1989) Group 111. Extremely halophilic archaebacteria, Order Halobacteriales ord. nov. In Bergey’s Manual of Systematic Bacteriology, vol. 3, pp. 2216-2233. J. T. Staley, M. P. Bryant, N. Pfennig and J. G. Holt. Baltimore, MD: Williams & Wilkins

    Google Scholar 

  • Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Class III. Halobacteria class. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 294–301. D. R. Boone, R. W. Castenholz and G. M. Garrity. New York: Springer

    Google Scholar 

  • Guy L, Ettema TJG (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19:580–587

    Article  CAS  Google Scholar 

  • Heywood VH, Dulloo ME (2005) In situ conservation of wild plant species: a critical global review of good practices. IPGRI Technical Bulletin No. 11. International Plant genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Hochstein LI (1988) The physiology and metabolism of the extremely halophilic bacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol II. CRC Press, Boca Raton, pp 67–83

    Google Scholar 

  • Horn MA, Matthies C, Kusel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83

    Article  CAS  Google Scholar 

  • Howes BL, Smith RL (1990) Sulfur cycling in a permanently ice covered amictic Antarctic lake, Lake Fryxell. Ant J US 25:230–233

    Google Scholar 

  • Huber R, Huber H, Stetter KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24:615–623

    Article  CAS  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806

    Article  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA (1992) Comparative physiological studies on hyperthermophilic Archaea isolated from deep-sea hot vents with emphasis on Pyrococcus strain GB-D. Appl Environ Microbiol 58:3472–3481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Javaux EJ (2006) Extreme life on Earth—past, present and possibly beyond. Res Microbiol 157:37–48

    Article  Google Scholar 

  • Jenney FE, Adams MW (2008) The impact of extremophiles on structural genomics and vice versa. Extremophiles 12:39–50

    Article  CAS  Google Scholar 

  • Jones D, Pell PA, Sneath PHA (1984) Maintenance of bacteria on glass beads at −60 °C to −70 °C. In: Kirsop BE, Snell JSS (eds) Maintenance of microorganisms. A manual of laboratory methods. Academic, London, pp 35–40

    Google Scholar 

  • Kamekura M, Oesterhelt D, Wallace R, Anderson P, Kushner DJ (1988) Lysis of halobacteria in bactopeptone by bile acids. Appl Environ Microbiol 54:990–995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    Article  CAS  Google Scholar 

  • Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA (2006) Biodiversity of methanogenic and other archaea in the permanently frozen Lake Fryxell, Antarctica. Appl Environ Microbiol 72:1663–1666

    Article  CAS  Google Scholar 

  • Kim J, Dordick JS (1997) Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol Bioeng 55:471–479

    Article  CAS  Google Scholar 

  • Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  • Larsen H (1981) The family Halobacteriaceae. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria, vol I. Springer, Berlin, pp 985–994

    Google Scholar 

  • Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    Article  CAS  Google Scholar 

  • Lopez-Garcia P, Lopez-Lopez A, Moreira D, Rodriguez-Valera F (2001) Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol Ecol 3:193–202

    Article  Google Scholar 

  • Madigan MT, Martinko JM (2005) Brock biology of microorganisms (11 edn). Pearson, San Francisco, CA, p. 136. isbn:0-13-196893-9

    Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (eds) (2009) Brock biology of microorganisms, 12th edn. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV (1999) Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res 9:608–628

    CAS  PubMed  Google Scholar 

  • Marhuenda-Egea FC, Piere-Velazquez S, Cadenas C, Cadenas E (2002) An extreme halophilic enzyme active at low salt in reversed micelles. J Biotechnol 93:159–164

    Article  CAS  Google Scholar 

  • Massana R, DeLong EF, Pedros-Alio C (2000) A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microbiol 66:1777–1787

    Article  CAS  Google Scholar 

  • Mayer F, Müller V (2013) Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 38:449–472. https://doi.org/10.1111/1574-6976.12043

    Article  CAS  PubMed  Google Scholar 

  • Nagrale DT, Renu and Sharma AK (2015) Preservation and maintenance of extremely halophilic archaea at low temperature. In: International Conference on “Low Temperature Science and Biotechnological Advances” during 27–30th April 2015), NASC Complex, Pusa Campus, New Delhi-110 012, India (Poster in theme session: Microbial storage for biotechnological application, pp.111

    Google Scholar 

  • Nakagawa T, Mori K, Kato C, Takahashi R, Tokuyama T (2007) Distribution of cold-adapted ammonia-oxidizing microorganisms in the deep ocean of the Northeastern Japan Sea. Microbes Environ 22:365–372

    Article  Google Scholar 

  • Nealson KH (1999) Post-Viking microbiology: new approaches, new data, new insights. Orig Life Evol Biosph 29:73–93

    Article  CAS  Google Scholar 

  • Norris PR, Burton NP, Foulis NA (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76

    Article  CAS  Google Scholar 

  • O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28:23–31

    Article  Google Scholar 

  • Olsen GJ, Woese CR (1997) Archaeal genomics: an overview. Cell 89:991–994

    Article  CAS  Google Scholar 

  • Oren A (1990) Starch counteracts the inhibitory action of bacto-peptone and bile salts in media for the growth of halobacteria. Can J Microbiol 36:299–301

    Article  CAS  Google Scholar 

  • Oren A (2001a) The order Haloanaerobiales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, third edn. Springer, New York (electronic publication)

    Google Scholar 

  • Oren A (2001b) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 3rd edn. Springer, New York (electronic publication)

    Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  Google Scholar 

  • Pouliot J, Ganland PE, Lovejoy C, Vincent WF (2009) Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes. Environ Microbiol 11:687–699

    Article  CAS  Google Scholar 

  • Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremophilic archaeal genus Sulfolobus. J Bacteriol 182:2985–2988

    Article  CAS  Google Scholar 

  • Purdy KJ, Cresswell-Maynard TD, Nedwell DB, Mc Genity TJ, Grant WD, Timmis KN, Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595

    Article  CAS  Google Scholar 

  • Rengpipat S, Langworthy TA, Zeikus JG (1988) Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep subsurface hypersaline environments. Syst Appl Microbiol 11:28–35

    Article  Google Scholar 

  • Rieger G, Müller K, Hermann R, Stetter KO, Rachel R (1997) Cultivation of hyperthermophilic archaea in capillary tubes resulting in improved preservation of fine structures. Arch Microbiol 168:373–379

    Article  CAS  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Dodsworth JA (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  CAS  Google Scholar 

  • Rodriguez-Valera F (1995) Cultivation of halophilic Archaea. In: DasSarma S, Fleischmann EM (eds) Archaea. A laboratory manual. Halophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 13–16

    Google Scholar 

  • Sakane T, Fukuda I, Itoh T, Yokota A (1992) Long-term preservation of halophilic archaebacteria and thermoacidophilic archaebacteria by liquid drying. J Microbiol Methods 16:281–287

    Article  Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89:78–90

    Google Scholar 

  • Schäfer G, Engelhard M, Müller V (1999) Bioenergetics of the archaea. Microbiol Mol Biol Rev 63:570–620

    PubMed  PubMed Central  Google Scholar 

  • Schiraldi C, Giuliano M, De Rosa M (2002) Perspectives on biotechnological applications of archaea. Archaea 1:75–86

    Article  CAS  Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH0. J Bacteriol 177:7050–7059

    Article  CAS  Google Scholar 

  • Shand RF, Leyva KJ (2008) Archaeal antimicrobials: an undiscovered country. In: Blum P (ed) Archaea: new models for prokaryotic biology. Caister Academic Press, Norfolk. isbn:978-1-904455-27-1

    Google Scholar 

  • Singh N, Kendall MM, Liu Y, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55:2531–2538

    Article  CAS  Google Scholar 

  • Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21:108–110

    Article  CAS  Google Scholar 

  • Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, David A, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340

    Article  CAS  Google Scholar 

  • Synowiecki J, Grzybowska B, Zdziebło A (2006) Sources, properties and suitability of new thermostable enzymes in food processing. Crit Rev Food Sci Nutr 46:197–205

    Article  CAS  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  CAS  Google Scholar 

  • Tekaia F, Lazcano A, Dujon B (1999) The genomic tree as revealed from whole proteome comparisons. Genome Res 9:550–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teske A, Sorensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18

    Article  CAS  Google Scholar 

  • Tindall BJ (1992) The family Halobacteriaceae. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, vol I. Springer, New York, pp 768–808

    Google Scholar 

  • Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci U S A 108:8420–8425

    Article  CAS  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev. Microbiol 5:316–323

    Article  CAS  Google Scholar 

  • Vester JK, Glaring MA, Stougaard P (2015) Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19:17–29

    Article  CAS  Google Scholar 

  • Wang X, Han Z, Bai Z, Tang J, Ma A, He J, Zhuang G (2011) Archaeal community structure along a gradient of petroleum contamination in saline-alkali soil. J Enviro Sci 23:1858–1864

    Article  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  CAS  Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Soll D (2000) Aminoacylt RNA synthetases, the genetic code and the evolutionary process. Microbiol Mol Biol Rev 64:202–236

    Article  CAS  Google Scholar 

  • Wolf YI, Aravind L, Grishin NV, Koonin EV (1999) Evolution of amino-acyl tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9:689–710

    CAS  PubMed  Google Scholar 

  • Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV (2001) Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8. https://doi.org/10.1186/1471-2148-1-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LM, Wang M, Prosser JI, Zheng YM, He JZ (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70:208–217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak T. Nagrale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagrale, D.T., Gawande, S.P. (2018). Archaea: Ecology, Application, and Conservation. In: Sharma, S., Varma, A. (eds) Microbial Resource Conservation. Soil Biology, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-96971-8_16

Download citation

Publish with us

Policies and ethics