Skip to main content

Comparative Study of Cyclic Softening Modelling and Proposition of a Modification to ‘MARQUIS’ Approach

  • Conference paper
  • First Online:
Advances in Materials, Mechanical and Industrial Engineering (INCOM 2018)

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Included in the following conference series:

  • 717 Accesses

Abstract

Cyclic hardening and softening of materials can be modelled by a single exponential decay function. Marquis proposed that similar function can be used to modify the dynamic recovery contribution of kinematic hardening rule to simulate cyclic hardening or softening by changing only the sign of a function parameter. According to Marquis, only kinematic hardening rule, then, can be able to simulate cyclic hardening and softening with reasonable physical justification. Though it is observed that, adoption of the function in multi-segmented kinematic hardening rule is not very capable, and a separate softening approach is proposed using the same Marquis function. The cyclic plastic response of SA333 steel subjected to uniaxial tension–compression cyclic loading is experimented, and predominant cyclic softening is observed with initially non-Masing plastic curvature. Three different softening models approached with multi-segmented Ohno–Wang kinematic hardening rule in commercial FE platform. The simulations are discussed in a comparative manner, and the modification proposed is found to be showing promising agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manson, S.S.: Behavior of materials under conditions of thermal stress. Heat Transf. Symp., 9–75 (1953)

    Google Scholar 

  2. Coffin, L.F.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Soc. Test. Mater. 76, 931–950 (1954)

    Google Scholar 

  3. Suresh, S.: Fatigue of materials. Cambridge University Press, ISBN: 978-0-52-157847-9 (1998)

    Google Scholar 

  4. Mughrabi, H.: Fatigue, an everlasting materials problem—still en vogue. Proc. Eng. 2(1), 3–26 (2010)

    Article  Google Scholar 

  5. Kumar, P.S., Sivaprasad, S., Dhar, S., Tarafder, S.: Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction. J. Nucl. Mater. 401(1–3), 17–24 (2010)

    Google Scholar 

  6. Kumar, P.S., Sivaprasad. S., Dhar. S., Tarafder. S.: Cyclic plastic deformation behavior in SA333 Gr. 6 C–Mn steel. Mater. Sci. Eng. A 528(24), 7341–7349 (2011)

    Google Scholar 

  7. Kumar, P.S., Sivaprasad, S., Dhar, S., Tarafder, S.: Key issues in cyclic plastic deformation: experimentation. Mech. Mater. 43(11), 705–720 (2011)

    Article  Google Scholar 

  8. Khutia, N., Dey, P.P., Kumar, P.S., Tarafder, S.: Development of non masing characteristic model for LCF and ratcheting fatigue simulation of SA333 C-Mn steel. Mech. Mater. 65, 88–102 (2013)

    Article  Google Scholar 

  9. Sivaprasad, S., Kumar, P.S., Arpan, D., Narasaiah, N., Tarafder, S.: Cyclic plastic behaviour of primary heat transport piping materials: influence of loading schemes on hysteresis loop. Mater. Sci. Eng. A 527(26), 6858–6869 (2010)

    Article  Google Scholar 

  10. Sivaprasad, S., Bar, H.N., Kumar, G.S., Punit, A., Bhasin, V., Tarafder, S.: A comparative assessment of cyclic deformation behaviour in SA333 Gr.6 steel using solid, hollow specimens under axial and shear strain paths. Int. J. Fatigue 61, 76–86 (2014)

    Article  Google Scholar 

  11. Sinha, A.K.: Ferrous Physical Metallurgy. Butterworths, London (1989)

    Google Scholar 

  12. Zhang, S., Wu, C.: Ferrous Materials. Metallurgical Industry Press, Beijing (1992)

    Google Scholar 

  13. Totten, G.E.: Steel Heat Treatment—Metallurgy and Technologies, 2nd edn. CRC Press, Taylor and Francis Group, Boca Raton (2007)

    Google Scholar 

  14. Ross, R.B.: Metallic Materials Specification Handbook, 4th edn. Chapman & Hall, London (1992)

    Book  Google Scholar 

  15. Mehran, M.: The Effects of Alloying Elements on Steels (I), Christian Doppler Laboratory for Early Stages of Precipitation, InstitutfürWerkstoffkunde, Schweißtechnik und SpanloseFormgebungsverfahren, TechnischeUniversität Graz (2007)

    Google Scholar 

  16. Bauschinger, J.: Über die Veranderung der Elasticitatsgrenze und elastcitatsmodulverschiedener, Metal Civiling N.F., 27, 289–348 (1881)

    Google Scholar 

  17. Chai, H.-F., Laird, C.: Mechanisms of cyclic softening and cyclic creep in low carbon steel. Mater. Sci. Eng. 93, 159–174 (1987)

    Article  Google Scholar 

  18. Sivaprasad, S., Swaminathan, J., Tiwary, Y.N., Roy, P.K., Singh, R.: Remaining life assessment of service exposed reactor and distillation column materials of a petrochemical plant. Eng. Fail. Anal. 10(3), 275–289 (2003)

    Article  Google Scholar 

  19. Masing, G.: Eigenspannungen und verfestigungbeim messing. In: Proceedings of the Second International Congress for Applied Mechanics, Zurich, pp. 332–335 (1926)

    Google Scholar 

  20. Bauschinger, J.: Mitteilung XV ausdemMechanisch-technischenLaboratorium der KöniglichenTechnischenHochschule in München 13, 1–115 (1886)

    Google Scholar 

  21. Boller, C., Seeger, T.: Materials Data for Cyclic Loading. Elsevier, ISBN: 978-0-44-442875-2 (1987)

    Google Scholar 

  22. Doong, S.H., Socie, D.F., Robertson, I.M.: Dislocation substructures and nonproportional hardening. ASME J. Eng. Mater. Technol. 112(4), 456–465 (1990)

    Article  Google Scholar 

  23. Jiang, Y., Kurath, P.: Nonproportional cyclic deformation: critical experiments and analytical modeling. Int. J. Plast. 13, 743–763 (1997)

    Article  MATH  Google Scholar 

  24. Jiang, Y.: An experimental study of inhomogeneous cyclic plastic deformation. J. Eng. Mater. Technol. 123(3), 274–280 (2001)

    Article  Google Scholar 

  25. Zhang, J., Jiang, Y.: A study of inhomogeneous plastic deformation of 1045 steel. J. Eng. Mater. Technol. 126(2), 164–171 (2004)

    Article  Google Scholar 

  26. Jiang, Y., Sehitoglu, H.: Cyclic ratchetting of 1070 steel under multiaxial stress states. Int. J. Plast. 10(5), 579–608 (1994)

    Article  Google Scholar 

  27. Jiang, Y., Sehitoglu, H.: Multiaxial cyclic ratchetting under multiple step loading. Int. J. Plast. 10(8), 849–870 (1994)

    Article  Google Scholar 

  28. Véronique, A., Philippe, Q., Suzanne, D.: Cyclic plasticity of a duplex stainless steel under non-proportional loading. Mater. Sci. Eng. A 346(1–2), 208–215 (2003)

    Google Scholar 

  29. Jiang, Y., Zhang, J.: Benchmark experiments and characteristic cyclic plasticity deformation. Int. J. Plast. 24(9), 1481–1515 (2008)

    Article  MATH  Google Scholar 

  30. Estrin, Y., Vinogradov, A.: Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Materialla 61(3), 782–817 (2013)

    Article  Google Scholar 

  31. Mughrabi, H.: On the current understanding of strain gradient plasticity. Mater. Sci. Eng. A 387–389, 209–213 (2004)

    Article  Google Scholar 

  32. Lu, K., Lu, L., Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324(5925), 349–352 (2009)

    Article  Google Scholar 

  33. Pan, Q.S., Lu, L.: Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins. Acta Mater. 81, 248–257 (2014)

    Article  Google Scholar 

  34. Masing, G.: ZurHeyn’schenTheorie der Verfestigung der MetalledurchverborgenelastischeSpannungen. In: Harries, C.D. (ed.) WissenschaftlicheVeröffentlichungenausdem Siemens-Konzern, pp. 231–239. Springer, Heidelberg (1923)

    Chapter  Google Scholar 

  35. Elline, F., Kujawaski, D.: Plastic strain energy in fatigue failure. J. Eng. Mater. Technol. Trans. 106, 342–347 (1984)

    Google Scholar 

  36. Fan, Z., Jiang, J.: Investigation of low cycle fatigue behavior of 16MnR steel at elevated temperature, Zhejiang DaxueXuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science) 38, 1190–1195 (2004)

    Google Scholar 

  37. Maier, H.J., Gabor, P., Gupta, N., Karaman, I., Haouaoui, M.: Cyclic stress-strain response of ultrafine grained copper. Int. J. Fatigue 28, 243–250 (2006)

    Article  Google Scholar 

  38. Wang, Z., Laird, C.: Relationship between loading process and Masing behavior in cyclic deformation. Mater. Sci. Eng. A 101, L1–L5 (1988)

    Article  Google Scholar 

  39. Raman, S.G.S., Padmanabhan, K.A.: Effect of prior cold work on the room temperature low-cycle fatigue behavior of AISI 304LN stainless steel. Int. J. Fatigue 18, 71–79 (1996)

    Article  Google Scholar 

  40. Plumtree, A., Abdel-Raouf, H.A.: Cyclic stress-strain response and substructure. Int. J. Fatigue 23, 799–805 (2001)

    Article  Google Scholar 

  41. Gough, H.J.: Crystalline structure in relation to failure of metals—especially by fatigue, Edgar Marburg Lecture. In: Proceedings of the American Society for Testing and Materials, vol. 33, II, pp. 3–114 (1933)

    Google Scholar 

  42. Orowan, E.Z.: Zur Kristallplastizität. I, Tieftemperaturplastizität und Beckersche Formel, ZeitschriftfürPhysik 89(9–10), 605–613 (1934)

    Google Scholar 

  43. Taylor, G.I.: Plastic strain in metals. J. Inst. Metals 62, 307–324 (1938)

    Google Scholar 

  44. Estrin, Y.: Dislocation theory based constitutive modelling: foundations and applications. J. Mater. Process. Technol. 80–81, 33–39 (1998)

    Article  Google Scholar 

  45. Kassner, M.E., Kyle, K.: Taylor hardening in five power law creep of metals and class M alloys. Nano Microstructural Des. Adv. Mater. 255–271 (2003)

    Google Scholar 

  46. Mughrabi, H.: The α-factor in the Taylor flow-stress law in monotonic, cyclic and quasi-stationary deformations: dependence on slip mode, dislocation arrangement and density. Curr. Opin. Solid State Mater. Sci. 26(6), 411–420 (2016)

    Article  Google Scholar 

  47. Kocks, U.F.: On the temperature and stress dependence of the dislocation velocity stress exponent. ScriptaMetallurgica 4(1), 29–31 (1970)

    Article  Google Scholar 

  48. Mecking, H., Kocks, U.F.: Physics and phenomenology of strain hardening: the FCC case. In: Progress in Material Science, pp. 171–273 (2003)

    Google Scholar 

  49. Rauch, E.F., Schmitt, J.H.: Dislocation substructures in mild steel deformed in simple shear. Mater. Sci. Eng. A 113, 441–448 (1989)

    Article  Google Scholar 

  50. Kubin, L., Devincre, B., Hoc, T.: Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater. 56(20), 6040–6049 (2008)

    Article  Google Scholar 

  51. Wood, W.A.: Bulletin/Institute of Metals 3, 5–6 (1955)

    Google Scholar 

  52. Plumbridge, W.J., Ryder, D.A.: Metall. Rev. 14(136), 119–142 (1969)

    Google Scholar 

  53. Ashby, M.F.: Philos. Mag. 21, 399–424 (1970)

    Article  Google Scholar 

  54. Franciosi, P.: The concepts of latent hardening and strain hardening in metallic single crystals. Acta Metall. 33(9), 1601–1612 (1985)

    Article  Google Scholar 

  55. Read, W.T., Shockley, W.: Dislocation models of grain boundaries. Phys. Rev. 78(3), 275–289 (1950)

    Article  MATH  Google Scholar 

  56. Sedláček, R., Blum, W., Kratochvíl, J., Forest, S.: Subgrain formation during deformation—physical origin and consequences. Metall. Mater. Trans. A 33A, 319–327 (2002)

    Article  Google Scholar 

  57. Bragg, W.L.: The structure of a cold worked metal. Proc. Phys. Soc. 52(1), 105–109 (1940)

    Article  Google Scholar 

  58. Burger, J.M.: Geometrical considerations concerning the structural irregularities to be assumed in a crystal. Proc. Phys. Soc. 52(1), 23–33 (1940)

    Article  Google Scholar 

  59. Read and Shockley: Quantitative predictions from dislocation models of crystal grain boundaries. Phys. Rev. 75(4), 692 (1949)

    Article  Google Scholar 

  60. Sauzay, M., Brillet, H., Monnet, I., Mottot, M., Barcelo, F., Fournier, B., Pineau, A.: Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel. Mater. Sci. Eng. A 400–401, 241–244 (2005)

    Article  Google Scholar 

  61. Fournier, B., Sauzay, M., Pineau, A.: Micromechanical model of the high temperature cyclic behavior of 9-12%Cr martensitic steels. Int. J. Plast. 27(11), 1803–1816 (2011)

    Article  MATH  Google Scholar 

  62. Mughrabi, H.: The long-range internal stress field in the dislocation wall structure of persistent slip bands. Physica Status Solidi (A) 104(1), 107–120 (1987)

    Article  Google Scholar 

  63. Li, Y., Laird, C.: Masing behavior observed in monocrystalline copper during cyclic deformation. Mater. Sci. Eng. A 161(1), 23–29 (1993)

    Article  Google Scholar 

  64. Watanabe, E., Asao, T., Toda, M., Yoshida, M., Horibe, S.: Relationship between Masing behavior and dislocation structure of AISI 1025 under different stress ratios in cyclic deformation. Mater. Sci. Eng. A 582, 55–62 (2013)

    Article  Google Scholar 

  65. Prnadtl, L.: Proceedings of the First International Congress of Applied Mechanics, Delft, 43 (1924)

    Google Scholar 

  66. Levy, M.: ComptesRendus. Académie des Sciences 70, 1323 (1870)

    Google Scholar 

  67. Mises, R.: Mechanik der festenKörperimplastisch-deformablenZustand. Nachrichten von der Gesellschaft der WissenschaftenzuGöttingen, Mathematisch-PhysikalischeKlasse 4, 582–593 (1913)

    Google Scholar 

  68. Reuss, A.: Berücksichtigung der elastischenFormänderung in der Plastizitätstheorie, ZeitschriftfürAngewandteMathematik und Mechanik (ZAMM—Journal of Applied Mathematics and Mechanics) 10(3), 266–274 (1930)

    Google Scholar 

  69. Lode, W.: Versucheüber den Einfluss der mittlerenHauptspannung auf das Fliessen der MetalleEisen. Kupfer und Nickel, ZeitschriftfürPhysik 36(11–12), 913–939 (1926)

    Google Scholar 

  70. Taylor, G.I., Quinney, H.: The Plastic Distortion of Metals. Philos. Trans. R. Soc. A 230, 681–693 (1931)

    MATH  Google Scholar 

  71. Hohenemser, K.: Fließversuche an Rohrenaus Stahl beikombinierter Zug- und Torsionsbeanspruchung, ZeitschriftfürAngewandteMathematik und Mechanik (ZAMM—Journal of Applied Mathematics and Mechanics) 11(1), 15–19 (1931)

    Google Scholar 

  72. Morrison, J.L.M., Shepherd, W.M.: An experimental investigation of plastic stress-strain relations. Proc. Inst. Mech. Eng. 163(1), 1–17 (1950)

    Article  Google Scholar 

  73. Hill, R.: Mathematical Theory of Plasticity. Oxford University Press, ISBN: 978-0-19-850367-5 (1950)

    Google Scholar 

  74. Prager, W.: The theory of plasticity: a survey of recent achievements. Proc. Inst. Mech. Eng. 169(1), 41–57 (1955)

    Article  MathSciNet  Google Scholar 

  75. Drucker, D.C.: Stress-Strain Relations in the Plastic Range—A Survey of Theory and Experiment. O.N.R. Report, NR-041-032 (1950)

    Google Scholar 

  76. Drucker, D.C.: A more fundamental approach to plastic stress-strain relations. In: Proceedings of the First US National Congress of Applied Mechanics, ASME, pp. 487–491 (1951)

    Google Scholar 

  77. Drucker, D.C.: A definition of stable inelastic material. J. Appl. Mech. 26, 101–106 (1959)

    MathSciNet  MATH  Google Scholar 

  78. Mises, R.: Mechanik der plastischenFormänderung von Kristallen, ZeitschriftfürAngewandteMathematik und Mechanik (ZAMM—Journal of Applied Mathematics and Mechanics) 8(3), 161–185 (1928)

    Google Scholar 

  79. Taylor, G.I.: A connexion between the criteria of yield and the strain ratio relationship in plastic solids. Proc. R. Soc. A 191(1027), 441–446 (1947)

    Google Scholar 

  80. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. A 193(1033), 281–297 (1948)

    MathSciNet  MATH  Google Scholar 

  81. Prager, W.: A new method of analyzing stresses and strains in work hardening plastic solids. ASME J. Appl. Mech. 23, 493–496 (1956)

    MathSciNet  MATH  Google Scholar 

  82. Mróz, Z.: On the description of anisotropic work hardening. J. Mech. Phys. Solids 15(3), 163–175 (1967)

    Article  Google Scholar 

  83. Besseling, J.F.: A theory of elastic, plastic and creep deformations of an initially isotropic material. J. Appl. Mech. 25, 529–536 (1958)

    MATH  Google Scholar 

  84. Li, J.C.M.: Some elastic properties of an edge dislocation wall. Acta Metall. 8(8), 563–574 (1960)

    Article  Google Scholar 

  85. Li, J.C.M.: Petch relation and grain boundary sources. Trans. Metall. Soc. AIME 227, 239–247 (1963)

    Google Scholar 

  86. Armstrong, P.J., Frederick, C.O.: A Mathematical Representation of the Multiaxial Bauschinger Effect, CEGB Report No.-RD/B/N 731 (1967)

    Google Scholar 

  87. Essmann, U., Mughrabi, H.: Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philos. Mag. A 40(6), 731–756 (1979)

    Article  Google Scholar 

  88. Chaboche, J.L., DangVan, K., Cordier, G.: Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel, SMiRT-5, Berlin (1979)

    Google Scholar 

  89. Chaboche, J.L.: Time-independent constitutive theories for cyclic plasticity. Int. J. Plast 2(2), 149–188 (1986)

    Article  MATH  Google Scholar 

  90. Chaboche, J.L.: On some modifications of kinematic hardening to improve the description of ratchetting effects. Int. J. Plast. 7(7), 661–678 (1991)

    Article  Google Scholar 

  91. Guionnet, C.: Modeling of ratcheting in biaxial experiments. J. Eng. Mater. Technol. 114, 56–62 (1992)

    Article  Google Scholar 

  92. Bari, S., Hassan, T.: Anatomy of coupled constitutive models for ratcheting simulation. Int. J. Plast. 16(3–4), 381–409 (2000)

    Article  MATH  Google Scholar 

  93. Dafalias, Y.F., Popov, E.P.: Plastic internal variables formalism of cyclic plasticity. J. Appl. Mech. 43, 645–650 (1976)

    Article  MATH  Google Scholar 

  94. Corona, E., Hassan, T., Kyriakides, S.: On the performance of kinematic hardening rules in predicting a class of biaxial ratcheting histories. Int. J. Plast. 12(1), 117–145 (1996)

    Article  Google Scholar 

  95. Ohno, N., Wang, J.D.: Kinematic hardening rules with critical state of dynamic recovery, part I: formulation. Int. J. Plast. 9(3), 375–391 (1993)

    Article  MATH  Google Scholar 

  96. Ohno, N., Wang, J.D.: Kinematic hardening rules with critical state of dynamic recovery, part II: application. Int. J. Plast. 9(3), 391–403 (1993)

    Article  Google Scholar 

  97. Ohno, N., Wang, J.D.: Kinematic hardening rules for simulation of ratchetting behaviour. Eur. J Mech. A Solids 13(4), 519–531 (1994)

    MATH  Google Scholar 

  98. McDowell, D.L.: Stress state dependence of cyclic ratcheting behavior of two rail steels. Int. J. Plast. 11, 397–421 (1995)

    Article  Google Scholar 

  99. Jiang, Y., Sehitoglu, H.: Modeling of cyclic ratchetting plasticity—Part I: development of constitutive relations. ASME J. Appl. Mech. 63(3), 720 (1996)

    Article  MATH  Google Scholar 

  100. Voyiadjis, G.Z., Sivakumar, S.M.: A robust kinematic hardening rule for cyclic plasticity with ratcheting effects, part I: theoretical formulation. Acta Mech. 90, 105–123 (1991)

    Article  MATH  Google Scholar 

  101. Voyiadjis, G.Z., Sivakumar, S.M.: Cyclic plasticity and ratchetting. Stud. Appl. Mech. 35, 253–295 (1994)

    Article  MATH  Google Scholar 

  102. Phillips, A., Tang, J.L.: The effect of loading paths on the yield surface at elevated temperatures. Int. J. Solids Struct. 8(4), 463–474 (1972)

    Article  Google Scholar 

  103. Phillips, A., Lee, C.W.: Yield surfaces and loading surfaces. Exp. Recommendations Int. J. Solids Struct. 15, 715–729 (1979)

    Article  Google Scholar 

  104. Tseng, N.T., Lee, G.C.: Simple plasticity model of two-surface type. ASCE J. Eng. Mech. 109(3), 795–810 (1983)

    Article  Google Scholar 

  105. Voyiadjis, G.Z., Basuroychowdhury, I.N.: A plasticity model for multiaxial cyclic loading and ratcheting. Acta Mech. 126, 19–35 (1998)

    Article  MATH  Google Scholar 

  106. Basuroychowdhury, I.N., Voyiadjis, G.Z.: A multiaxial cyclic plasticity model for nonproportional loading cases. Int. J. Plast. 14(9), 855–870 (1998)

    Article  MATH  Google Scholar 

  107. Abdel-Karim, M., Ohno, N.: Kinematic hardening model suitable for ratcheting with steady-state. Int. J. Plast. 16(3–4), 225–240 (2000)

    Article  MATH  Google Scholar 

  108. Zaverl Jr., F., Lee, D.: Constitutive relations for nuclear reactor core materials. J. Nucl. Mater. 75, 14–19 (1978)

    Article  Google Scholar 

  109. Marquis, D.: Modelisation et Identification de I’Ecrouisage Anisotropic des Metaux, These Paris VI (1979)

    Google Scholar 

  110. Haupt, P., Kamlah, M., TsakmakisCh, : Continuous representation of hardening properties in cyclic plasticity. Int. J. Plast. 8, 803–817 (1992)

    Article  MATH  Google Scholar 

  111. Jiang, Y., Kurath, P.: Characteristics of Armstrong-Frederick type plasticity models. Int. J. Plast. 12(3), 387–415 (1996)

    Article  MATH  Google Scholar 

  112. SIMULIA ABAQUS CAE v6.8 user manual

    Google Scholar 

  113. Rahaman, S.M.: Finite Element Analysis and Related Numerical Schemes for Ratcheting Simulation, Ph.D. thesis submitted in North Carolina State University, USA (2006)

    Google Scholar 

  114. Nagtegaal, J.C.: On the implementation of inelastic constitutive equations with special reference to large deformation problems. Comput. Methods Appl. Mech. Eng. 33, 469–484 (1982)

    Article  MATH  Google Scholar 

  115. Simo, J.C., Taylor, R.L.: Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Eng. 48, 101–118 (1985)

    Article  MATH  Google Scholar 

  116. Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Meth. Eng. 22, 649–670 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  117. Kobayashi, M., Ohno, N.: Implementation of cyclic plasticity models based on a general form of kinematic hardening. Int. J. Numer. Meth. Eng. 53, 2217–2238 (2002)

    Article  MATH  Google Scholar 

  118. Dunne, F., Patrinik, N.: Introduction to Computational Plasticity. Oxford University Press, ISBN: 978-0-19-856826-1 (2005)

    Google Scholar 

  119. Ypma, T.J.: Historical development of Newton-Raphson method. Soc. Ind. Appl. Math. 37(4), 531–551 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Bhabha Atomic Research Centre, Mumbai, for financial assistance through collaborative project and National Metallurgical Laboratory, Jamshedpur, for experimental support. The authors also acknowledge Dr. Surajit Kumar Paul, National Metallurgical Laboratory, Jamshedpur, for TEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasish Bhattacharjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharjee, S., Dhar, S., Acharyya, S.K., Gupta, S.K. (2019). Comparative Study of Cyclic Softening Modelling and Proposition of a Modification to ‘MARQUIS’ Approach. In: Sahoo, P., Davim, J. (eds) Advances in Materials, Mechanical and Industrial Engineering. INCOM 2018. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-96968-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96968-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96967-1

  • Online ISBN: 978-3-319-96968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics