Skip to main content

Bambara Groundnut (Vigna Subterranea (L) Verdc)—A Climate Smart Crop for Food and Nutrition Security

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Pulse Crops

Abstract

Bambara groundnut (Vigna subterranea (L) Verdc.) is an underutilized legume native to sub-Saharan Africa, where it is grown at low levels by many farmers as a component of household food and nutritional security. It is generally regarded as drought tolerant and fills the same agroecological niche as peanut (Arachis hypogaea L). Molecular research in this crop really began only in the early 2000s but has gathered pace and the recent publication of the first genome draft as part of the AOCC drive to sequence 101 African crop species marks an important milestone towards the application of genome-enabled breeding. This crop has potential to contribute to the climate-smart agriculture of the future. The current article traces the progress made in recent years and highlights the challenges that still remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu H, Buah S (2011) Characterization of Bambara groundnut landraces and their evaluation by farmers in the upper West Region of Ghana. J Dev Sustain Agri 6:64–74

    Google Scholar 

  • Adzawla W, Donkoh SA, Nyarko G, O’Reilly PJ, Olayide O, Mayes S, Feldman AB, Azman Halimi R (2016a) Adoption of Bambara groundnut production and its effects on farmers’ welfare in North Ghana. Afr J Agri Res 11(7):583–594

    Article  Google Scholar 

  • Adzawla W, Donkoh SA, Nyarko G, O’Reilly P, Mayes S (2016b) Use patterns and perceptions about the attributes of Bambara groundnut (Vigna subterranea (L.) Verdc.) in Northern Ghana. Ghana J Sci Technol Dev 4(2):56–71

    Google Scholar 

  • Ahmad NS, Sri Redjeki E, Ho WK, Aliyu S, Mayes K, Massawe F, Kilian A, Mayes S (2016) Construction of a genetic linkage map and QTL analysis in Bambara groundnut. Genome 59(7):459–472

    Article  CAS  Google Scholar 

  • Ajayi FA, Lale NES (2001) Susceptibility of unprotected seeds and seeds of local Bambara groundnut cultivars protected with insecticidal essential oils to infestation by Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 37:47–62

    Article  CAS  Google Scholar 

  • Al Shareef I, Sparkes D, Azam-Ali S (2014) Temperature and drought stress effects on growth and development of Bambara groundnut (Vigna subterranea L.). Exp Agri 50(1):72–89

    Google Scholar 

  • Aliyu S, Massawe F (2013) Microsatellites based marker molecular analysis of Ghanaian Bambara groundnut (Vigna subterranea (L.) Verdc.) landraces alongside morphological characterization. Genet Resour Crop Evol 60:777–787

    Google Scholar 

  • Aliyu S, Massawe F, Mayes S (2015) Beyond landraces: developing improved germplasm resources for underutilized species—a case for Bambara groundnut. Biotechnol Genet Eng Rev 30(2):127–141

    Article  Google Scholar 

  • Aliyu S, Massawe F, Mayes S (2016) Genetic diversity and population structure of Bambara groundnut (Vigna subterranea (L.) Verdc.): synopsis of the past two decades of analysis and implications for crop improvement programmes. Genet Resour Crop Evol 63:925–943

    Article  Google Scholar 

  • Amarteifio JO, Tibe O Njogu R (2010) The nutrient composition of Bambara groundnut [Vigna subterreanea (L.) Verdc.] Landraces Cultivated in Southern Africa. Agri Trop Subtrop 43:1–5

    Google Scholar 

  • Astutia RM, Sri Palupib N, Zakariab FR (2016) Allergic reactivity of Bambara groundnut (Vigna subterranea) proteins. Food Agri Immunol 27(4):535–546

    Article  Google Scholar 

  • Atoyebi JO, Oyatomi O, Osilesi O, Adebawo O, Abberton M (2017) Morphological characterisation of selected African Accessions of Bambara groundnut (Vigna subterranea (L.) Verdc.). Intl J Plant Res 7(2):29–35

    Google Scholar 

  • Atoyebi JO, Osilesi O, Abberton M, Adebawo O, Oyatomi O (2018) Quantification of selected anti—nutrients and bioactive compounds in African Bambara groundnut (Vigna subterranea (L.) Verdc.). Am J Food Nutr 6(3):88–95

    Google Scholar 

  • Azam-Ali SN (1998) Bambara groundnut yield/ecology. Evaluating the potential for Bambara groundnut as a food crop in semi-arid Africa. An approach for assessing the yield potential and ecological requirements of an underutilized crop. Summary report of European Commission supported STD-3 Projects. Published by CTA

    Google Scholar 

  • Azam-Ali SN, Sesay A, Karikari SK, Massawe F, Aguilar-Manjarrez J, Bannayan M, Hampson KJ (2001) Assessing the potential of an underutilized crop—a case study using Bambara groundnut. Exp Agri 37:433–472

    Article  Google Scholar 

  • Azman Halimi R, Mayes S, Barkla B, King G (2019) The potential of the underutilized pulse Bambara groundnut (Vigna subterranea (L.) Verdc.) for nutritional food security. J Food Compos Analys 77:47–59

    Article  CAS  Google Scholar 

  • Baptista A, Pinho O, Pinto E, Casal S, Mota C, Ferreira IMPLVO (2017) Characterization of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. Walp) and Bambara groundnuts (Vigna subterranea L. Verdc) from Mozambique. Food Meas 11:442

    Google Scholar 

  • Basu SM, Mayes S, Davey M, Roberts JA, Azam-Ali SN, Mithen R, Pasquet RS (2007a) Inheritance of ‘domestication’ traits in Bambara groundnut (Vigna subterranea (L.) Verdc.). Euphytica 157:59–68

    Article  CAS  Google Scholar 

  • Basu S, Roberts JA, Azam-Ali SN, Mayes S (2007b) Bambara groundnut. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol Pulses. Sugar and Tuber Crops. Springer, New York, pp 159–173

    Google Scholar 

  • Basu S, Roberts SN, Azam-ali SN, Mayes S (2007c) Development of microsatellite markers for bambara groundnut (Vigna subterranea L. Verdc.) - an underutilised African legume crop species. Mol Ecol Notes 7(6):1326–1328

    Google Scholar 

  • Begemann F (1988) Ecogeographic differentiation of Bambara groundnut (Vigna subterranea) in the collection of the International Institute of Tropical Agriculture (IITA). Wissenschaftlicher Fachverlag Dr Fleck, Niederkleen, Germany

    Google Scholar 

  • Berchie JN, Adu-Dapaah HK, Dankyi AA, Plahar WA, NelsonQuarety F, Haleegoah J, Asafu-Agyei JN, Addo JK (2010) Practices and constraints in Bambara groundnut production, marketing and consumption in the brong ahafo and upper-East regions of Ghana. J Agron 9(3):111–118

    Article  Google Scholar 

  • Berchie JN, Opoku M, Adu-Dapaah H, Agyemang A, Sarkodie-Addo J, Asare E, Addo J, Akuffo H (2012) Evaluation of five Bambara groundnut (Vigna subterranea (L) Verdc.) landraces to heat and drought stress at Tono-Navrongo, Upper East Region of Ghana. Afr J Agri Res 7(2):250–256

    Google Scholar 

  • Berchie JN, Amelie G, McClymont S, Raizada M, Adu-Dapaah H, Sarkodie-Addo J (2013) Performance of 13 Bambara groundnut (Vigna subterranea (L.) Verdc.) landraces under 12 H and 14 H photoperiod. J Agron 12(1):20–28

    Google Scholar 

  • Berchie JN, Dapaah HA, Agyemang A, Sarkodie Addo J, Addo JK, Addy S, Blankson E (2016) Performance of five Bambara groundnut (Vigna subterannea (L.) Verdc.) landraces in the Transition Agroecology of Ghana under different sowing dates. Agri Food Sci J Ghana 9:718–729

    Google Scholar 

  • Bharatkumar C, Nandini R, Bhanuprakash K, Dhanapal GN, Shashidhar H, Savithramma D (2015) Genetic Enhancement of protein and methionine content in Bambara groundnut (Vigna subterranea (L.) Verdc.) through mutation breeding. Intl J Res Agri For 2(11):8–13

    Google Scholar 

  • Bonthala VS (2018) Translating nucleic acid binding protein function from model species to minor crops using transfer learning. PhD thesis, University of Nottingham

    Google Scholar 

  • Bonthala VS, Mayes K, Moreton J, Blythe M, Wright V, May ST, Massawe F, Mayes S and Twycross J (2016) Identification of gene modules associated with low temperature response in Bambara groundnut by network-based analysis. PloS One 11(2):e0148771

    Google Scholar 

  • Botwright Acuna T, Riffkin P, Merry A, Christy B, Richards R, Zhang H, Berger J, O’Leary G, Partington D (2015) Can the duration of the spike construction phase increase the yield of wheat? In: Proceedings of the 17th ASA conference, 20–24 Sept 2015, Hobart, Australia. www.agronomy2015.com.au

  • Brink M (1997) Rates of progress towards flowering and podding in Bambara groundnut (Vigna subterranea) as a function of temperature and photoperiod. Ann Bot 80(4):505–513

    Article  Google Scholar 

  • Brink M (1998) Matching crops and environments: quantifying photothermal influences on reproductive development in Bambara groundnut (Vigna subterranea (L.) Verdc. PhD thesis, Wageningen University, Netherlands

    Google Scholar 

  • Brink M (1999) Development, growth and dry matter partitioning in Bambara groundnut Vigna subterranea) as influenced by photoperiod and shading. J Agri Sci (Camb.) 133:159–166

    Article  Google Scholar 

  • Brink M, Sibuga KP, Tarimo AJP, Ramolemana GM (2000) Quantifying photothermal influences on reproductive development in Bambara groundnut (Vigna subterranea): models and their validation. Field Crops Res 66(1):1–14

    Article  Google Scholar 

  • Brough SH, Azam-Ali SN, Taylor AJ (1992) The potential of Bambara groundnut (Vigna subterranea (L.) Verdc.) in vegetable milk production and basic protein functionality system. Food Chem 47:277–283

    Article  Google Scholar 

  • Chai HH, Massawe F, Mayes S (2016) Effects of mild drought stress on the morpho-physiological characteristics of a Bambara groundnut segregating population. Euphytica 208(2):225–236; Chandra K, Nandini R, Pranesh, Kumar CB, Gobu R (2017) Improving nutritional security of India through a potential underutilised legume—Bambara groundnut (Vigna subterranea (L) Verdc) Environ Ecol 35(2):606–610

    Google Scholar 

  • Chai HH, Ho WK, Graham N, May S, Massawe F, Mayes S (2017) A cross-species gene expression marker-based genetic map and QTL analysis in bambara groundnut. Genes 8:84

    Google Scholar 

  • Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie K, Wang S, Li L, Muchugi A, Jamnadass R, Lu R, Peng S, Van Deynze A, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X (2018) The draft genomes of five agriculturally important African orphan crops. GigaScience. https://doi.org/10.1093/gigascience/giy152

  • Chapman M (2015) Transcriptome sequencing and marker development for four underutilized legumes. Appl Plant Sci 3(2):1400111

    Article  Google Scholar 

  • Chibarabada TP, Modi AT, Mabhaudhi T (2015) Water use characteristics of a Bambara groundnut (Vigna subterranea L. Verdc) landrace during seedling establishment. Water SA 41(4):472–482

    Google Scholar 

  • Chotechung S, Somta P, Chen J, Yimram T, Chen X, Srinives P (2016) A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: bruchidae) resistance in mungbean (Vigna radiata). Theor Appl Genet 129(9):1673–1683

    Article  CAS  Google Scholar 

  • Christy B, Tausz-Posch S, Tausz M, Richards R, Rebetzke G, Condon A, McLean T, Fitzgerald G, Bourgault M, O’Leary G (2018) Benefits of increasing transpiration efficiency in wheat under elevated CO2 for rainfed regions Glob Change Biol 24(5):1965–1977; Collinson ST, Clawson EJ, Azam-Ali SN, Black CR (1997) Effects of soil moisture deficits on the water relations of Bambara groundnut (Vigna subterranea L. Verdc.). J Exp Bot 48:877–884

    Google Scholar 

  • Condon AG, Richards R, Rebetzke G, Farquhar G (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460; Dakora FD (1998) Nodule function in symbiotic Bambara groundnut (Vigna subterranea L.) and kersting’s bean (Macrotyloma geocarpum l.) is tolerant of nitrate in the root medium. Ann Bot 82:687–690

    Google Scholar 

  • Dakora FD, Belane AK, Mohale KC, Makhubedu TI, Makhura P, Pule‐Meulenberg F, Mapope N, Mogkelhe SN, Gyogluu C, Phatlane GP, Muhaba S, Mokobane F, Oteng‐Frimpong R (2015) Food grain legumes: their contribution to soil fertility, food security, and human nutrition/health in Africa. In: Frans J de Bruijn (ed) Biological nitrogen fixation. Wiley-Blackwell. https://doi.org/10.1002/9781119053095

  • Dalziel JM (1937) Voandzeia Thou. In: The useful plants of west tropical Africa. Crown Agents for the Colonies, London, Agents, London, pp 269–271

    Google Scholar 

  • Dhanaraj B (2018) Effect of short duration high temperature stress on bambara groundnut (Vigna subterranea (L.) Verdc.) plant reproduction. PhD thesis, University of Nottingham

    Google Scholar 

  • Doku EV, Karikari SK (1971) Operational selection in wild Bambara groundnut. Ghana J Sci 11:45–56

    Google Scholar 

  • Duke J (1981) Voandzeia subterranea (L). Thouars. In: Handbook of legumes of world economic importance. Plenum Press, New York, pp 307–310

    Google Scholar 

  • Echezona BC, Amuji CF, Eze S (2013) Evaluation of some accessions of Bambara groundnut (Vigna subterranea L. Verdc.) for resistance to bruchid infestation, based on grain source and seed coat colour. J. Plant Protec Res 53(3):210–213

    Google Scholar 

  • Effa EB, Uko AK (2017) Food security potentials of Bambara groundnut (Vigna subterranea (L.) Verdc.). Intl J Dev Sustain 6 (12):1919–1930

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Fatimah S, Ariffin, Ardiarini NR, Kuswanto (2018) Genetic diversity of madurese Bambara groundnut (Vigna subterranea L. Verdc.) lines based on morphological and RAPD markers. SABRAO J Breed Genet 50(2):101–114

    Google Scholar 

  • Feldman A, Ho WK, Massawe F, Mayes S (2019) Bambara groundnut is a climate-resilient crop: how could a drought-tolerant and nutritious legume improve community resilience in the face of climate change? In: Sarkar A, Sensarma S, vanLoon G (eds) Sustainable solutions for food security. Springer, Cham, Switzerland, pp 151–167

    Chapter  Google Scholar 

  • Gibb DJ, Lee SC, Isa MN, Gramuglia S, Fukao S, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2012) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plant. Nature 479(7373):415–418

    Article  Google Scholar 

  • Gonné S, Félix-Alain W, Benoît KB (2013) Assessment of twenty Bambara groundnut (Vigna subterranea (L.) Verdcourt) landraces using quantitative morphological traits. Intl J Plant Res 3(3):39–45. https://doi.org/10.5923/j.plant.20130303.04

  • Graciet E, Wellmer F (2010) The plant N-end rule pathway: Structure and functions. Trends Plant Sci 15:447–453

    Article  CAS  Google Scholar 

  • Hepper FN (1963) Plants of the 1957–58 West African Expedition: II. The Bambara groundnut (Voandzeia subterranea) and Kersting’s groundnut (Kerstingiella geocarpa) Wild in West Africa. Kew Bull 16:395. https://doi.org/10.2307/4114681

  • Hillocks RJ, Bennett C, Mponda OM (2012) Bambara nut: a review of utilisation, market potential and crop improvement. Afr Crop Sci J 20(1):1–16

    Google Scholar 

  • Ho WK, Muchugi A, Muthemba S, Kariba R, Mavenkeni BO, Hendre P, Song B, Deynze AV, Massawe F, Mayes S (2016) Use of microsatellite markers for the assessment of Bambara groundnut breeding system and varietal purity before genome sequencing. Genome. 59(6):427–431

    Article  CAS  Google Scholar 

  • Ho WK, Chai HH, Kendabie P, Ahmad NS, Jani J, Massawe F, Kilian A, Mayes S (2017) Integrating genetic maps in Bambara groundnut [Vigna subterranea (L) Verdc.] and their syntenic relationships among closely related legumes. BMC Genomics 18(1):192

    Google Scholar 

  • Ismail AM, Singh US, Singh S, Darb MH, Mackill DJ (2013) The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia. Field Crops Res 152:83–93

    Article  Google Scholar 

  • Jørgensen ST, Aubanton M, Harmonic C, Dieryck C, Jacobsen S, Simonsen H, Ntundu W, Stadler F, Basu S, Christiansen J (2009) Identification of photoperiod neutral lines of Bambara groundnut (Vigna subterranea) from Tanzania. In: IOP Conference Series: earth and environmental science, vol 6, 2023

    Google Scholar 

  • Jørgensen ST, Liu F, Ouédraogo M, Ntundu WH, Sarrazin J, Christiansen JL (2010) Drought responses of two Bambara groundnut (Vigna subterranea L. Verdc.) landraces collected from a dry and a humid area of Africa. J Agron Crop Sci 196:412–422

    Article  Google Scholar 

  • Karikari SK (2004) Variability between local and exotic Bambara groundnut landraces in Botswana. Afr Crop Sci J 8:145–152

    Google Scholar 

  • Karunaratne AS, Azam-Ali SN, Al-Shareefa I, Sesay A, Jørgensen ST, Crout NMJ (2010) Modelling the canopy development of Bambara groundnut. Agri For Meterol 150(7–8):1007–1015

    Article  Google Scholar 

  • Karunaratne AS, Azam-Ali SN, Izzi G, Steduto P (2011) Calibration and validation of fao-aquacrop model for irrigated and water deficient Bambara groundnut. Exp Agric 47(3):509–527

    Article  Google Scholar 

  • Karunaratne AS, Walker S, Ruane AC (2015) Modelling Bambara groundnut yield in Southern Africa: towards a climate-resilient future. Clim Change 65:193–203

    Google Scholar 

  • Kendabie P, Massawe F, Mayes S (2015) Developing genetic mapping resources from landrace-derived genotypes that differ for photoperiod sensitivity in Bambara groundnut (Vigna subterranea L.). Asp Appl Biol 124:1–8

    Google Scholar 

  • Khan F, Chai HH, Ajmera I, Hodgman C, Mayes S, Lu C (2017) A transcriptomic comparison of two bambara groundnut landraces under dehydration stress. Genes 8(4):533–546

    Google Scholar 

  • Kosini D, Saidou C, Nukenine EN (2017) Physico-chemical properties and resistance of ten Bambara groundnut (Vigna subterranea) varieties to attack by Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae) in the Sudano-Sahelian and Sudano-Guinean Zones of Cameroon. J Exp Agri Intl 15(1):1–14

    Article  Google Scholar 

  • Kwak M, Toro O, Debouck DG (2012) Gepts P (2012) Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris). Ann Bot 110:1573–1580

    Article  Google Scholar 

  • Linnemann AR (1993) Phenological development of Bambara groundnut (Vigna subterranea (L) Verdc.) at constant exposure to photoperiod of 10 h and 16 h. Ann Bot 71:445–452

    Article  Google Scholar 

  • Linnemann AR, Craufurd PQ (1994) Effects of temperature and photoperiod on phenological development in three genotypes of Bambara groundnut (Vigna subterranea). Ann Bot 74:675–681

    Article  Google Scholar 

  • Linnemann AR, Westphal E, Wessel M (1995) Photoperiod regulation of development and growth in Bambara groundnut (Vigna subterranea). Field Crop Res 40:39–47

    Article  Google Scholar 

  • Mabhaudhi T, Modi AT (2013) Growth, phenological and yield responses of a Bambara groundnut (Vigna subterranea (L.) Verdc.) landrace to imposed water stress under field conditions. S Afr J Plant Soil 30(2):69–79. Mabhaudhi T, Modi AT, Beletse YG (2013) Growth, phenological and yield responses of a Bambara groundnut (Vigna subterranea L. Verdc) landrace to imposed water stress: II. Rain shelter conditions. Water SA 39:191–198

    Google Scholar 

  • Mabhaudhi T, Chibarabada TP, Chimonyo VGP, Modi AT (2018) Modelling climate change impact: a case of Bambara groundnut (Vigna subterranea). Phys Chem Earth 105:25–31

    Article  Google Scholar 

  • Massawe F, Roberts J, Azam-Ali S, Davey MR (2003a) Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc) landraces assessed by random amplified polymorphic DNA (RAPD) markers. Genet Resour Crop Evol 50:737–741

    Article  CAS  Google Scholar 

  • Massawe F, Dickinson M, Roberts J, Azam-Ali S (2003b) Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc) landraces revealed by AFLP markers. Genome 45(6):1175–1180

    Google Scholar 

  • Massawe F, Schenkel W, Basu S, Temba EM (2003c) Artificial hybridisation in bambara groundnut (Vigna subterranea (L.) Verdc.). In: Proceedings of the international Bambara groundnut symposium, vol 1, Botswana, pp 193–209

    Google Scholar 

  • Massawe FJ, Mwale SS, Azam-Ali SN Roberts JA (2005) Breeding in Bambara groundnut (Vigna subterranea (L.) Verdc.): strategic considerations. Afr J Biotechnol 4:463–471

    Google Scholar 

  • Mayes S, Basu S, Murchie E, Roberts JA, Azam-Ali SN, Stadler F, Mohler V,Wenzel G, Massawe F, Kilian A, Bonin A, Beena A, Sheshshayee MS (2009) BAMLINK—a cross disciplinary programme to enhance the role of Bambara groundnut (Vigna subterranea L. Verdc.) for food security in Africa and India. Acta Hort 806:137–150

    Google Scholar 

  • Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2011) The potential for underutilized crops to improve security of food production. J Exp Bot 63(3):1075–1079

    Article  Google Scholar 

  • Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M, Korn A, Marquez J, Szarejko I, Maluszynski M, King J, Axcell B, Smart K, Corbineau F, Holdsworth MJ (2016) Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS 6. Plant Biotechnol J 14:40–50

    Google Scholar 

  • Miesho WB, Gebremedhin HM, Msiska UM, Mohammed KE, Malinga GM, Sadik K, Odong TL, Rubaihayo P, Kyamanywa S (2018) New sources of cowpea genotype resistance to cowpea bruchid Callosobruchus maculatus (F.) in Uganda. Intl J Agron Agri Res 12(4):39–52

    Google Scholar 

  • Minka SR, Bruneteau M (2000) Partial chemical composition of Bambara pea [Vigna subterranea (L.) Verdc.]. Food Chem 68:273–276

    Article  CAS  Google Scholar 

  • Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena K, Penmetsa RV, Varshney RK (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor Appl Genet 127:2663–2678

    Article  CAS  Google Scholar 

  • Mkandawire CH (2007) Review of Bambara groundnut production in sub-Saharan Africa. Agri J 2(4):464–470

    Google Scholar 

  • Mohammed MS, Shimelis HA, Laing MD (2016) Preliminary investigation on some agronomic and morphological variations of within and between Bambara groundnut landraces. J Agri Sci Technol 18:1909–1920

    Google Scholar 

  • Molosiwa OO, Aliyu S, Stadler F, Mayes K, Massawe F, Kilian A, Mayes S (2015) SSR marker development, genetic diversity and population structure analysis of Bambara groundnut [Vigna subterranea (L.) Verdc.] landraces. Genet Resour Crop Evol 62:1225–1243

    Article  CAS  Google Scholar 

  • Mubaiwa J, Fogliano V, Chidewe C, Bakker EJ, Linnemann AR (2018) Utilization of bambara groundnut (Vigna subterranea (L.) Verdc.) for sustainable food and nutrition security in semi-arid regions of Zimbabwe. PLoS One 13(10):e0204817

    Google Scholar 

  • Muhammad YY, Mayes S, Massawe F (2015) Effects of short term water deficit stress on physiological characteristics of Bambara groundnut (Vigna subterranea (L) Verdc.). S Afr J Plant Soil 33(1):1–8

    Google Scholar 

  • Musa M, Massawe F, Mayes S, Alshareef I and Singh A (2016) Nitrogen fixation and N-balance studies on Bambara groundnut (Vigna subterranea L. Verdc) landraces grown on tropical acidic soils of Malaysia. Commun Soil Sci Plant Analys 47(4):533–542

    Google Scholar 

  • Mwale SS, Azam-Ali SN, Massawe FJ (2007). Growth and development of Bambara groundnut (Vigna subterranea) in response to soil moisture 2. Resource capture and conversion. Eur J Agron 26(4):354–362

    Google Scholar 

  • Nautiyal PC, Kulkarni G, Singh AL, Basu MS (2017) Evaluation of water-deficit stress tolerance in Bambara groundnut landraces for cultivation in sub-tropical environments in India. Indian J Plant Physiol 22(2):190–196

    Article  Google Scholar 

  • Nofita ANF, Sri Lestari P, Kuswanto (2015) Agronomical characters on 18 selected genotypes of Bambara groundnut (Vigna subterranea (L.) Verdcourt). J Produksi Tanaman 3(2):157–163

    Google Scholar 

  • Ntundu WH, Shillah SA, Marandu WYF, Christiansen JL (2006) Morphological diversity of Bambara groundnut [Vigna subterranea (L.) Verdc.] landraces in Tanzania. Genet Resour Crop Evol 53:367–378

    Article  Google Scholar 

  • Obagwu J (2003) Evaluation of Bambara groundnut (Vigna subterranea (L.) Verdc) lines for reaction to Cercospora leaf spot. J Sustain Agri 22(1):93–100

    Google Scholar 

  • Odeigah PGC, Osanyinpeju AO (1998) Evaluating the genetic biodiversity of Bambara groundnut accessions from Nigeria using SDS-polyacrylamide gel electrophoresis. Genet Resour Crop Evol 45:451–458

    Article  Google Scholar 

  • Odongo FO, Oyoo FE, Wasike V, Owouche JO, Karanje K, Korir, P (2015) Genetic diversity of Bambara groundnut (V. subterranea (L) Verdc) landraces in Kenya using microsatellite markers. Afr J Biotechnol 14(4):283–291

    Google Scholar 

  • Ofori I (1996) Correlation and path-coefficient analysis of components of seed yield in Bambara groundnut (Vigna subterranea). Euphytica 91:103–107

    Article  Google Scholar 

  • Ofori K, Kumaga FK, Bimi LK (2001) Variation in seed size, seed protein and tannin content of Bambara groundnut. Trop Sci 41:41–44

    Google Scholar 

  • Okpuzor J, Ogbunugafor HA, Okafor U, Sofidiya M (2010) Identification of protein types in bambara nut seeds: perspectives for dietary protein supply in developing countries EXCLI J 9:17–28. http://www.excli.de/vol9/okpuzor02_2010/okpuzor_bambara_010210_proof.pdf

  • Olayide OE, Donkoh SA, Ansah IGK, Adzawla W, O’Reilly PJ, Mayes S, Feldman A, Halimi RA, Nyarko G, Ilori CO, Alabi T (2018) Assessing socioeconomic factors influencing production and commercialisation of Bambara groundnut as an indigenous climate resilient crop in Nigeria In: Leal Filho W (ed) Handbook of climate change resilience. Springer Nature. https://doi.org/10.1007/978-3-319-71025-9_158-1

  • Olukolu BA, Mayes S, Stadler F, Ng NQ, Fawole I, Dominique D, Azam-Ali SN, Abbott AG, Kole C (2012) Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc.) as revealed by phenotypic descriptors and DArT marker analysis. Genet Resour Crop Evol 59:347–358

    Article  Google Scholar 

  • Ouedraogo M, Oeudraogo TJ, Tignere BJ, Balama D, Dabiere BC, Konate G (2008) Characterization and evaluation of accessions of Bambara groundnut (Vigna subterranea (L.) Verdcourt) from Burkina Faso. Sci Nat 5:191–197

    Google Scholar 

  • Pasquet RS (2004) Bambara groundnut and cowpea genepool organization and domestication. In: Proceedings of the International Bambara Groundnut Symposium, 5–12 Sept 2003, Gaborone, Botswana, pp 265–274

    Google Scholar 

  • Pasquet RS, Fotso M (1997) The ORSTOM Bambara groundnut collection. In: Heller J, Begemann F, Mushonga J (eds) Bambara Groundnut, Vigna subterranea (L.) Verdc. IPGRI, Rome, Italy, pp 119–123

    Google Scholar 

  • Pasquet RS, Schwedes S, Gepts P (1999) Isozyme diversity in Bambara groundnut. Crop Sci 39:1228–1236

    Article  CAS  Google Scholar 

  • Raper DC Jr, Thomas JF (1978) Photoperiodic alteration of dry matter partitioning and seed yield in soybean. Crop Sci 18:654–656

    Article  Google Scholar 

  • Repinski SL, Kwak M, Gepts P (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet 124:1539

    Google Scholar 

  • Santos R (2018) PhD thesis submitted in partial fulfilment of the requirements of a Doctor of Philosophy Degree, University of Nottingham, UK

    Google Scholar 

  • Sesay A, Mpuisang T, Morake TS, Al-Shareef I, Chepete HJ, Moseki B (2013) Preliminary assessment of Bambara groundnut (Vigna subterranea L.) landraces for temperature and water stress tolerance under field conditions in Botswana. S Afr J Plant Soil 27(4):312–321

    Google Scholar 

  • Shegro WS, van Rensburg J, Adebola PO (2013) Assessment of genetic variability in Bambara groundnut (Vigna subterrenea L. Verdc.) using morphological quantitative traits. Acad J Agri Res 1(3):45–51

    Google Scholar 

  • Slafer GA, González FG, Kantolic AG, Whitechurch EM, Abeledo LG, Miralles DJ, Savin R. Basra AS (2006) Grain number determination in major grain crops. In: Basra AS (ed) Handbook of seed science and technology. Haworth Press, New York, pp 95–123

    Google Scholar 

  • Somta P, Chankaew S, Rungnoi O, Srinives P (2011) Genetic diversity of the Bambara groundnut (Vigna subterranea (L.) Verdc.) as assessed by SSR markers. Genome 54(11):898–910

    Google Scholar 

  • Song YH, Ito S, Imaizumi T (2010) Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol 13(5):594–603

    Article  Google Scholar 

  • Soni ML, Yadava ND, Talwar HS, Nathawat NS, Rathore VS, Gupta K (2015) Variability in heat tolerance in Bambara groundnut (Vigna subterranea (L.) Verdc.) Indian J Plant Physiol 20(1):92–96

    Google Scholar 

  • Sprent JI, Odee DW, Dakora FD (2010) African legumes: a vital but under-utilized resource. J Exp Bot 61(5):1257–1265

    Google Scholar 

  • Srinivasan A, Takeda H, Senboku T (1996) Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescent technique. Euphytica 88:35–43

    Article  Google Scholar 

  • Srinives P, Somta P, Somta C (2007) Genetics and breeding of resistance to bruchids (Callosobruchus spp.) in Vigna Crops: a review. NU Sci J 4(1):1–17

    Google Scholar 

  • Stadler F (2008) Analysis of differential gene expression under water-deficit stress and genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc.) using novel high-throughput technologies. PhD thesis, Technische Universität München, Wissenschaftszentrum Weihenstephan, für Ernährung, Landnutzung und Umwelt Lehrstuhl für Pflanzenzüchtung, Germany

    Google Scholar 

  • Stadler F, Mohler V, Kilian A, Bonin A, Thümmler F, Mayes S, Ros B, Wenzel G (2007) Applying biotechnology to underutilised crops: initial results from applying Diversity Arrays Technology (DArT) and massively parallel signature sequencing to Bambara groundnut. New approaches to plant breeding of orphan crops in Africa, 19–21 Sept, Bern, Switzerland. Abstracts 66

    Google Scholar 

  • Summerfield RJ, Roberts EH, Ellis RH, Lawn RJ (1991) Towards the reliable prediction of time to flowering in 6 annual crops 1. The development of simple-models for fluctuating field environments. Exp Agri 27(1):11–31

    Google Scholar 

  • Summerfield RJ, Lawn RJ, Qi A, Ellis RH, Roberts EH, Chay PM, Brouwer JB, Rose JL, Shanmugasundaram S Yeates SJ, Sandover S (1993). Towards the reliable prediction of time to flowering in 6 annual crops 2. Soybean (Glycine-max). Exp Agri 29(3):253–289

    Google Scholar 

  • Summerfield RJ, Asumadu H, Ellis RH, Qi A (1998) Characterization of the photoperiodic response of post-flowering development in maturity isolines of soyabean [Glycine max (L.) Merrill] ‘Clark’. Ann Bot 82(6):765–771

    Google Scholar 

  • Suwanprasert J, Toojinda T, Srinives P, Chanprame S (2006) Hybridization technique for Bambara groundnut. Breed Sci 56:125–129

    Article  Google Scholar 

  • Tadele Z (2018) African orphan crops under abiotic stresses: challenges and opportunities. Scientifica 1451894. https://doi.org/10.1155/2018/1451894

  • Talwar HS, Takeda H, Yashima S, Senboku T (1999) Growth and photosynthetic responses of groundnut genotypes to high temperature. Crop Sci 39:460–466

    Article  Google Scholar 

  • Talwar HS, Chandra Sekhar A, Nageswara Roa RC (2002) Genotypic variability in membrane thermostability in groundnut. Indian J Plant Physiol 7(2):97–102

    Google Scholar 

  • Temegne NC, Gouertoumbo WF, Wakem GA, Nkou FTD, Youmbi E, Ntsomboh-Ntsefong G (2018) Origin and ecology of Bambara groundnut (Vigna subterranea (L.) Verdc. J Ecol Nat Resour 2(4):000140

    Google Scholar 

  • Trachse S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341(1–2):75–87

    Google Scholar 

  • Unigwe AE, Gerrano AS, Adebola P, Pillay M (2016) Morphological variation in selected accessions of Bambara groundnut (Vigna subterranea L. Verdc) in South Africa. J Agri Sci 8(11):69–80

    Google Scholar 

  • Uvere P, Onyekwere EU, Ngoddy PO (2010) Production of maize–Bambara groundnut complementary foods fortified pre-fermentation with processed foods rich in calcium, iron, zinc and provitamin A. J Sci Food Agri 90:566–573

    CAS  Google Scholar 

  • Vicente J, Mendiondo G, Pauwels J, Pastor V, Izquierdo Y, Naumann C, Movahedi M, Rooney D, Gibbs DJ, Smart K, Bachmair A, Gray JE, Dissmeyer N, Castresana C, Ray RV, Gevaert K, Holdsworth MJ (2018) Distinct branches of the N-end rule pathway modulate the plant immune response. New Phytol. https://doi.org/10.1111/nph.15387

  • Wakhungu CN, Tabu IM, Otaye OD, Wasike WV (2017) Distribution of Fusarium wilt of Bambara nut (Vigna subterranea (L.) Verdc.) in farmers’ fields’ of Busia County in Western Kenya and its management using farmyard manure. Arch Phytopathol Plant Protec 50(7–8):398–414

    Google Scholar 

  • Yetunde EA, Iyam MA, Lawal O, Udofia U, Ani IF (2009) Utilization of Bambara groundnut flour blends in bread production. J Food Technol 4:111–114

    Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104(2):127–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Mayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayes, S., Ho, W.K., Chai, H.H., Song, B., Chang, Y., Massawe, F. (2019). Bambara Groundnut (Vigna Subterranea (L) Verdc)—A Climate Smart Crop for Food and Nutrition Security. In: Kole, C. (eds) Genomic Designing of Climate-Smart Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-96932-9_8

Download citation

Publish with us

Policies and ethics