Skip to main content

Laser Ablation Propulsion and Its Applications in Space

  • Chapter
  • First Online:
Advances in the Application of Lasers in Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 274))

Abstract

Where lasers shine is in propelling a remote object using a space-based mother ship with an onboard laser. In some cases, there is no other reasonable choice. These cases include small low Earth orbit (LEO) debris reentry, large LEO debris nudging to avoid collisions, direct launch to LEO of small payloads at low cost and raising large geosynchronous (GEO) objects to graveyard orbits. We introduce the new, exciting idea of the laser rocket, in which a “burst mode” laser accelerates a 25-kg spherical probe surrounded by a discardable ablator layer to 3.6 km/s in minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Tsander, Flight to other planets (1924), in Development of Russian Rocket Technology, ed. by Y. Moshkin (Mashinostroyeniye Press, Moscow, 1973) (in Russian)

    Google Scholar 

  2. K. Tsiolkovsky, Plan of space exploration, 1926 (in Russian), available in English in “Exploration of the Universe with Reaction Machines: Exploring the Unknown,” NASA History Series. NASA SP 4407, Washington, D.C. (1995)

    Google Scholar 

  3. H. Oberth, Die Rakete zu den Planetenräumen (The Rocket to the Planet Spaces) (Oldenbourg Verlag, München, 1923)

    MATH  Google Scholar 

  4. E. Sänger, Zur Theorie der Photonenraketen, in Probleme der Weltraumforschung, (IV. Internationaler Astronautischer Kongress, Zürich 1953; S. 32), Laubscher, Biel-Bienne (1955)

    Google Scholar 

  5. H. Yano, Cosmic dust detection by the IKAROS large area dust detectors ion interplanetary space from the Earth to Venus, in 42nd Lunar and Planetary Science Conference (2011) (in Japanese)

    Google Scholar 

  6. A. Kantrowitz, Propulsion to orbit by ground-based lasers. Astronaut. Aeronaut. 10(5), 74–76 (1972)

    Google Scholar 

  7. F.V. Bunkin, A.M. Prokhorov, Use of a laser energy source in producing a reactive thrust. Sov. Phys. Usp. 19(7), 561–573 (1976)

    Article  ADS  Google Scholar 

  8. C. Phipps, J. Luke, W. Helgeson, Laser-powered, multi-newton thrust space engine with variable specific impulse, in High-Power Laser Ablation VII, Proceedings of SPIE 7005, 1X1–1X-8 (2008)

    Google Scholar 

  9. L.N. Myrabo, D.G. Messitt, F.B. Mead Jr., Ground and flight tests of a laser propelled vehicle, in paper AIAA 98-1001, 36th AIAA Aerospace Science Meeting and Exhibit, Reno, NV 12–15 January 1998

    Google Scholar 

  10. L. N. Myrabo, World Record Flights of Beam-Riding Rocket Lightcraft: Demonstration of ‘Disruptive’ Propulsion Technology, in paper AIAA 2001-3798, 37th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, 8–11 July 2001

    Google Scholar 

  11. R.A. Liukonen, Laser jet propulsion, in XII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, Proceeding of SPIE 3574, 470–474 (1998)

    Google Scholar 

  12. W.L. Bohn, Laser lightcraft performance, in High-Power Laser Ablation II, Proceeding of SPIE 3885, 48–53 (1999)

    Google Scholar 

  13. A. Sasoh, Laser-driven in-tube accelerator. Rev. Sci. Instrum. 72(3), 1893–1898 (2001)

    Article  ADS  Google Scholar 

  14. C. Phipps, M. Birkan, W. Bohn, H.-A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, J. Sinko, Review: laser ablation propulsion. J. Propul. Power 26(4), 609–637 (2010)

    Article  Google Scholar 

  15. C.R. Phipps, J.R. Luke, Laser Space Propulsion, in Laser Ablation and its Applications, Chap. 16, Springer Series in Optical Sciences, vol. 129, 407–434 (2007)

    Google Scholar 

  16. T.K.M. Lippert, Materials for laser propulsion, SPIE 7005 paper 7005–38 (2008)

    Google Scholar 

  17. C. Phipps et al., Appl. Surf. Sci. 252, 4838–4844 (2006)

    Article  ADS  Google Scholar 

  18. B. Esmiller, C. Jacquelard, H.-A. Eckel, and E. Wnuk, Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE. Appl. Opt. 53(31), I45–I54 (2014)

    Article  Google Scholar 

  19. C. Phipps et al., Optimum parameters for laser-launching objects into low Earth orbit. Laser Part. Beams 18(4), 661–695 (2000)

    Article  ADS  Google Scholar 

  20. C. Phipps, C. Bonnal, F. Masson, M. Boustie, L. Berthe, M. Schneider, S. Baton, E. Brambrink, J.-M. Chevalier, L. Videau and S. A. E. Boyer, Transfers from Earth to LEO and LEO to interplanetary space using lasers, Acta Astronaut. 146, 92–102 (2018)

    Article  ADS  Google Scholar 

  21. J. Mason et al., Orbital debris-debris collision avoidance. Adv. Space Res. 48, 1643–1655 (2011)

    Article  ADS  Google Scholar 

  22. D. Overbye, Reaching for the Stars, Across 4.37 Light-years, New York Times 12 April 2016

    Google Scholar 

  23. C. Phipps, Comparing Laser and Electric Propulsion, in Proceeding 4th International Workshop on Space Debris Modeling and Remediation, Paris, 6–8 June 2016

    Google Scholar 

  24. C.R. Phipps Jr, T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, T.R. King, Impulse Coupling to Targets in Vacuum by KrF, HF and CO2 Lasers. J. Appl. Phys. 64, 1083 (1988)

    Google Scholar 

  25. C. Phipps et al., Removing orbital debris with lasers. Adv. Space Res. 49, 1283–1300 (2012)

    Article  ADS  Google Scholar 

  26. B. Poling et al., The Properties of Gases and Liquids, 5th edn. (McGraw-Hill, New York, 2001), pp. 7.9–7.11

    Google Scholar 

  27. The SESAME equation-of-state database is maintained by group T-1 at Los Alamos National Laboratory (sesame@lanl.gov); see S.P. Lyon and J.D. Johnson, SESAME: The Los Alamos National Laboratory Equation of State Database, LANL Report No. LA-UR-92-3407, 1992 for additional information

    Google Scholar 

  28. J. Sinko, C. Phipps, Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes. Appl. Phys. Lett. 95, 131105 (2009)

    Article  ADS  Google Scholar 

  29. C. Phipps, An alternate treatment of the vapor-plasma transition. Int. J. Aero. Innovations 3, 45–50 (2011)

    Article  Google Scholar 

  30. C. Phipps, High power laser systems for space debris clearing, in Fifth International School on Lasers in Material Science, San Servolo, 10–17 July 2016

    Google Scholar 

  31. M. Saha, Ionization in the solar chromosphere. Phil. Mag. 40, 472 (1920)

    Article  Google Scholar 

  32. C.R. Phipps, C. Bonnal, A spaceborne, pulsed UV laser system for re-entering or nudging LEO debris, and re-orbiting GEO debris. Acta Astronaut. 118, 224–236 (2016)

    Article  ADS  Google Scholar 

  33. C. Phipps, High Power Laser Systems for Space Debris Clearing, in Fifth International School on Lasers in Materials Science, San Servolo, Italy, 10–17 July 2016

    Google Scholar 

  34. K. Fournier, LASNEX calculations of laser-coupling coefficients for Al targets, UCRL-Pres-226849, p. 29 (2006)

    Google Scholar 

  35. E. Loktionov et al., Thermophysical and gas-dynamic characteristics of laser-induced gas-plasma flows under femtosecond laser ablation. Q. Electron. 44, 225–232 (2014)

    Article  ADS  Google Scholar 

  36. X. Zhu, N. Zhang, Investigation of ultrashort pulse laser propulsion using time-resolved shadowgraphy and torsion pendulum, in Proceeding of International Symposium on Photoelectric Detection and Imaging, SPIE 7382, 73208 (2009)

    Google Scholar 

  37. S. Scharring et al., Numerical simulations on laser-ablative micropropulsion with short and ultrashort laser pulses. Trans. JSASS Aerospace Tech. 14, 69–75 (2016)

    Article  Google Scholar 

  38. C. Phipps, Comparative Performance of Laser and Electric Space Propulsion, Final report, CNES document AVP-NT-3250000-ZZ-1606-CNRS (2016), available from CNES

    Google Scholar 

  39. C. Phipps, J. Luke, Diode laser-driven microthrusters: a new departure for micropropulsion. J. AIAA 40(20), 310–318 (2002)

    Article  ADS  Google Scholar 

  40. C. Phipps, M. Boustie, J.-M. Chevalier, S. Baton, E. Brambrink, L. Berthe, M. Schneider, L. Videau, S.A.E. Boyer and S. Scharring, Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength. J. Appl. Phys. 122, 193103. (2017) https://doi.org/10.1063/1.4997196

    Article  ADS  Google Scholar 

  41. R. Weber et al., Heat accumulation during pulsed laser materials processing. Opt. Express 22, 11312–11324 (2014)

    Article  ADS  Google Scholar 

  42. C. Phipps, LʼADROIT—a spaceborne ultraviolet laser system for space debris clearing. Acta Astronaut. 104, 243–255 (2014)

    Article  ADS  Google Scholar 

  43. Bosch working on 50 kWh battery pack weighting 190 kg, http://www.electric-vehiclenews.com/2015/10/bosch-working-on-50-kwh-battery-packs.html

  44. C. Phipps, Pulsed Laser ADR Strategy, in talk #5.2, 3rd European Workshop on Space Debris Modeling and Remediation, CNES-HQ, Paris, 16–18 June (2014)

    Google Scholar 

  45. C. Phipps et al., Small Payload Transfers from Earth to LEO and LEO to Interplanetary Space using Lasers, in Proceeding of 7th European Conference for Aeronautics and Space Sciences, Politecnico di Milano, Milan, 3–6 July 2017

    Google Scholar 

  46. R. Soulard et al., ICAN: a novel laser architecture for space debris removal. Acta Astronaut. 105, 192–200 (2014)

    Article  ADS  Google Scholar 

  47. C. Phipps, Concerns for Phased Fiber laser arrays in space, in 4th European Workshop on Space Dberis modeling and Remediation, CNES-HQ, Paris, 6–8 June 2016

    Google Scholar 

  48. T. Ebisuzaki et al., Remediation of cm-size space debris from the International Space Station, in Proceeding Workshop on Laser Solutions for Orbitral Debrs, Université Paris Diderot, 27–28 April 2015

    Google Scholar 

  49. http://www.hilase.cz/en/advanced-dpssl-laser-dipole-100-delivers-1kw-performance/

  50. C. Phipps, C. Bonnal, F. Masson and P. Musumeci, Launching swarms of microsatellites using a 100 kW average power pulsed laser, JOSA B 35(10), B20–B26 (2018) https://doi.org/10.1364/JOSAB.35.000B20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude R. Phipps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phipps, C.R. (2018). Laser Ablation Propulsion and Its Applications in Space. In: Ossi, P. (eds) Advances in the Application of Lasers in Materials Science. Springer Series in Materials Science, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-96845-2_8

Download citation

Publish with us

Policies and ethics