Laser Synthesis, Processing, and Spectroscopy of Atomically-Thin Two Dimensional Materials

  • David B. GeoheganEmail author
  • Alex A. Puretzky
  • Aziz Boulesbaa
  • Gerd Duscher
  • Gyula Eres
  • Xufan Li
  • Liangbo Liang
  • Masoud Mahjouri-Samani
  • Chris Rouleau
  • Wesley Tennyson
  • Mengkun Tian
  • Kai Wang
  • Kai Xiao
  • Mina Yoon
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 274)


Atomically-thin two-dimensional (2D) materials display widely varying electronic and vibronic properties compared to their bulk counterparts. Laser interactions with 2D materials are central to their development. Here we attempt to overview recent progress and define the current challenges in the broad range of laser interactions involved in the synthesis, processing, and optical characterization of 2D materials as the field has emerged from graphene and h-BN to encompass a multitude of other atomically-thin semiconducting, superconducting, thermoelectric, etc. 2D materials as “building blocks” for future energy applications and devices. Here, we first focus on challenges in the synthesis and processing of mainly semiconducting 2D layers for optoelectronics, and the advantages offered by non-equilibrium laser processing. Then, we review the optical characterization techniques that are being developed to serve as remote probes of their electronic and vibronic properties, as well as their structure, stacking, and atomistic alignment. Together, examples will be shown how these developments are already being merged to fulfill the promise for tailored synthesis and assembly of these exquisite materials with real-time in situ control of structure and optoelectronic properties.


grapheneGraphene Single-walled Carbon Nanohorns (SWCNHs) defectsDefects MoS2 MoSe2 Raman spectroscopyRaman Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support for the explorations of synthesis science of 2D materials, which is sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, and for support for the explorations of their heterogeneity and associated functionality through the development of laser spectroscopic and other characterization techniques at the Center for Nanophase Materials Sciences, a nanoscale science research center which is sponsored by the U.S. DOE-BES Scientific User Facilities Division.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666–669 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Geim, I.V. Grigorieva, Nature 499(7459), 419–425 (2013)CrossRefGoogle Scholar
  3. 3.
    J.D. Cain, E.D. Hanson, F.Y. Shi, V.P. Dravid, Curr. Opin. Solid St. M 20(6), 374–387 (2016)CrossRefGoogle Scholar
  4. 4.
    C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 117(9), 6225–6331 (2017)CrossRefGoogle Scholar
  5. 5.
    C.N.R. Rao, U. Maitra, Annu. Rev. Mater. Res. 45, 29–62 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L.B. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F.N. Xia, Y.L. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, J.A. Robinson, ACS Nano 9(12), 11509–11539 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Garcia-Hernandez, J. Coleman, 2D Mater 3(1) (2016)Google Scholar
  8. 8.
    S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J.X. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, ACS Nano 7(4), 2898–2926 (2013)CrossRefGoogle Scholar
  9. 9.
    R. Lv, H. Terrones, A.L. Elías, N. Perea-López, H.R. Gutiérrez, E. Cruz-Silva, L.P. Rajukumar, M.S. Dresselhaus, M. Terrones, Nano Today 10(5), 559–592 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Das, J.A. Robinson, M. Dubey, H. Terrones, M. Terrones, Annu. Rev. Mater. Res. 45, 1–27 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Kolobov, J. Tominaga, Two-Dimensional Transition-Metal Dichalcogenides. (Springer International Publishing, 2016)Google Scholar
  12. 12.
    F. Bonaccorso, L. Colombo, G.H. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347(6217) (2015)CrossRefGoogle Scholar
  13. 13.
    H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 47(4), 1067–1075 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Cui, B. Li, J. Li, Z. Wei, Sci. China Phys. Mech. Astron. 61(1), 016801 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    A. Pant, Z. Mutlu, D. Wickramaratne, H. Cai, R.K. Lake, C. Ozkan, S. Tongay, Nanoscale 8(7), 3870–3887 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    D.M. Hamann, E.C. Hadland, D.C. Johnson, Semicond. Sci. Technol. 32(9), 093004 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    R. Dong, I. Kuljanishvili, J. Vac. Sci. Technol. B Nanotechnology Microelectron.: Mater. Proc. Meas. Phenom. 35(3), 030803 (2017)CrossRefGoogle Scholar
  18. 18.
    W. Xia, L. Dai, P. Yu, X. Tong, W. Song, G. Zhang, Z. Wang, Nanoscale 9(13), 4324–4365 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Huang, C. Tan, Z. Yin, H. Zhang, Adv. Mater. 26(14), 2185–2204 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5(4), 263–275 (2013)CrossRefGoogle Scholar
  21. 21.
    C.R. Ryder, J.D. Wood, S.A. Wells, M.C. Hersam, 10(4) 3900–3917 (2016)Google Scholar
  22. 22.
    C. Tan, H. Zhang, Chem. Soc. Rev. 44(9), 2713–2731 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Wasala, H.I. Sirikumara, Y.R. Sapkota, S. Hofer, D. Mazumdar, T. Jayasekera, S. Talapatra, J. Mater. Chem. C. 5, 11214–11225 (2017)CrossRefGoogle Scholar
  24. 24.
    X. Congxin, L. Jingbo, J. Semiconductors 37(5), 051001 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    W. Zhang, Q. Wang, Y. Chen, Z. Wang, A.T. Wee, 2D Mater 3(2), 022001 (2016)Google Scholar
  26. 26.
    F. Ceballos, H. Zhao, Adv Funct Mater 27(19), 1604509 (2017)Google Scholar
  27. 27.
    H.B. Ribeiro, M.A. Pimenta, C.J. de Matos, J. Raman Spectrosc. 49,76–90 (2018)Google Scholar
  28. 28.
    R. Saito, A.R. Nugraha, E.H. Hasdeo, S. Siregar, H. Guo, T. Yang, Phys. Status Solidi (b) 252(11), 2363–2374 (2015)Google Scholar
  29. 29.
    X. Zhang, Q.-H. Tan, J.-B. Wu, W. Shi, P.-H. Tan, Nanoscale 8(12), 6435–6450 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    X.L. Li, W.P. Han, J.B. Wu, X.F. Qiao, J. Zhang, P. H. Tan, Adv Funct Mater 27(19), 1604468 (2017)Google Scholar
  31. 31.
    J. Ji, S. Dong, A. Zhang, Q. Zhang, Phys. E 80, 130–141 (2016)CrossRefGoogle Scholar
  32. 32.
    X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Chem. Soc. Rev. 44(9), 2757–2785 (2015)CrossRefGoogle Scholar
  33. 33.
    H.Y. Yu, X.D. Cui, X.D. Xu, W. Yao, Natl. Sci. Rev. 2(1), 57–70 (2015)CrossRefGoogle Scholar
  34. 34.
    C. Tan, Z. Liu, W. Huang, H. Zhang, Chem. Soc. Rev. 44(9), 2615–2628 (2015)CrossRefGoogle Scholar
  35. 35.
    X. Wei, F.-G. Yan, C. Shen, Q.-S. Lv, K.-Y. Wang, Chin. Phys. B 26(3), 038504 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    J. Wang, H. Fang, X. Wang, X. Chen, W. Lu, W. Hu, Small 13(35), 1700894 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Eftekhari, Appl. Mater. Today 8, 1–17 (2017)CrossRefGoogle Scholar
  38. 38.
    X. Li, M.W. Lin, J.H. Lin, B. Huang, A.A. Puretzky, C. Ma, K. Wang, W. Zhou, S.T. Pantelides, M.F. Chi, I. Kravchenko, J. Fowlkes, C.M. Rouleau, D.B. Geohegan, K. Xiao, Sci Adv 2 (4), e1501882 (2016)Google Scholar
  39. 39.
    T. Heine, Acc. Chem. Res. 48(1), 65–72 (2014)CrossRefGoogle Scholar
  40. 40.
    Y. Sun, R. Wang, K. Liu, Appl. Phys. Rev. 4(1), 011301 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    R. Roldan, A. Castellanos-Gomez, E. Cappelluti, F. Guinea, J. Phys-Condens Mat. 27(31), 313201 (2015)Google Scholar
  42. 42.
    S.W. Wang, H. Medina, K.B. Hong, C.C. Wu, Y.D. Qu, A. Manikandan, T.Y. Su, P.T. Lee, Z.Q. Huang, Z.M. Wang, F.C. Chuang, H.C. Kuo, Y.L. Chueh, ACS Nano 11(9), 8768–8776 (2017)CrossRefGoogle Scholar
  43. 43.
    Basic Research Needs for Synthesis Science, Report of the Basic Energy Sciences Workshop on Synthesis Science for Energy Relevant Technology, May 2–4 (2016),
  44. 44.
    Presented at the Workshop on Nucleation and Growth Mechanisms of Single Wall Carbon Nanotubes, Bandera, Texas, 2015 (unpublished)Google Scholar
  45. 45.
    M.S. Donley, P.T. Murray, S.A. Barber, T.W. Haas, Surf. Coat. Tech. 36(1–2), 329–340 (1988)CrossRefGoogle Scholar
  46. 46.
    M.S. Donley, N.T. Mcdevitt, T.W. Haas, P.T. Murray, J.T. Grant, Thin Solid Films 168(2), 335–344 (1989)ADSCrossRefGoogle Scholar
  47. 47.
    N.T. McDevitt, J.E. Bultman, J.S. Zabinski, Appl. Spectrosc. 52(9), 1160–1164 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    F. Ullah, V. Senthilkumar, S.H. Kim, C.T. Le, H. Rock, D.Y. Lee, S. Park, A.I. Ali, Y.S. Kim, J. Nanosci. Nanotechno. 16(10), 10284–10289 (2016)CrossRefGoogle Scholar
  49. 49.
    M.I. Serna, S.H. Yoo, S. Moreno, Y. Xi, J.P. Oviedo, H. Choi, H.N. Alshareef, M.J. Kim, M. Minary-Jolandan, M.A. Quevedo-Lopez, ACS Nano 10(6), 6054–6061 (2016)CrossRefGoogle Scholar
  50. 50.
    C.R. Serrao, A.M. Diamond, S.L. Hsu, L. You, S. Gadgil, J. Clarkson, C. Carraro, R. Maboudian, C.M. Hu, S. Salahuddin, Appl. Phys. Lett. 106(5), 052101 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    G. Siegel, Y.P.V. Subbaiah, M.C. Prestgard, A. Tiwari, APL Mater. 3(5), 056103 (2015)Google Scholar
  52. 52.
    A. Barvat, N. Prakash, B. Satpati, S.S. Singha, G. Kumar, D.K. Singh, A. Dogra, S.P. Khanna, A. Singha, P. Pal, J. Appl. Phys. 122(1), 015304 (2017)Google Scholar
  53. 53.
    Y.T. Ho, C.H. Ma, T.T. Luong, L.L. Wei, T.C. Yen, W.T. Hsu, W.H. Chang, Y.C. Chu, Y.Y. Tu, K.P. Pande, E.Y. Chang, Phys. Status Solidi-R 9(3), 187–191 (2015)CrossRefGoogle Scholar
  54. 54.
    M. Gao, M.H. Zhang, W. Niu, Y.Q. Chen, M. Gu, H.Y. Wang, F.Q. Song, P. Wang, S.C. Yan, F.Q. Wang, X.R. Wang, X.F. Wang, Y.B. Xu, R. Zhang, Appl. Phys. Lett. 111(3), 031906 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    S.R. Jian, J.Y. Juang, C.W. Luo, S.A. Ku, K.H. Wu, J. Alloy. Compd. 542, 124–127 (2012)CrossRefGoogle Scholar
  56. 56.
    M. Mahjouri-Samani, R. Gresback, M.K. Tian, K. Wang, A.A. Puretzky, C.M. Rouleau, G. Eres, I.N. Ivanov, K. Xiao, M.A. McGuire, G. Duscher, D.B. Geohegan, Adv. Funct. Mater. 24(40), 6365–6371 (2014)CrossRefGoogle Scholar
  57. 57.
    M. Mahjouri-Samani, M.K. Tian, A.A. Puretzky, M.F. Chi, K. Wang, G. Duscher, C.M. Rouleau, G. Eres, M. Yoon, J. Lasseter, K. Xiao, D.B. Geohegan, Nano Lett. 17(8), 4624–4633 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    M. Mahjouri-Samani, M. Tian, K. Wang, A. Boulesbaa, C.M. Rouleau, A.A. Puretzky, M.A. McGuire, B.R. Srijanto, K. Xiao, G. Eres, G. Duscher, D.B. Geohegan, ACS Nano 8(11), 11567–11575 (2014)CrossRefGoogle Scholar
  59. 59.
    M. Mahjouri-Samani, M.W. Lin, K. Wang, A.R. Lupini, J. Lee, L. Basile, A. Boulesbaa, C.M. Rouleau, A.A. Puretzky, I.N. Ivanov, K. Xiao, M. Yoon, D.B. Geohegan, Nat. Commun. 6, 7749 (2015)Google Scholar
  60. 60.
    M. Mahjouri-Samani, L.B. Liang, A. Oyedele, Y.S. Kim, M.K. Tian, N. Cross, K. Wang, M.W. Lin, A. Boulesbaa, C.M. Rouleau, A.A. Puretzky, K. Xiao, M. Yoon, G. Eres, G. Duscher, B.G. Sumpter, D.B. Geohegan, Nano Lett. 16(8), 5213–5220 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    A.A. Puretzky, D.J. Styers-Barnett, C.M. Rouleau, H. Hu, B. Zhao, I.N. Ivanov, D.B. Geohegan, Appl. Phys A-Mater 93(4), 849–855 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306(5700), 1362–1364 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    D.B. Geohegan, A.A. Puretzky, C. Rouleau, J. Jackson, G. Eres, Z. Liu, D. Styers-Barnett, H. Hu, B. Zhao, I. Ivanov, in Laser-Surface Interactions for New Materials Production (Springer Berlin Heidelberg, 2010), pp. 1–17Google Scholar
  64. 64.
    D.B. Geohegan, A.A. Puretzky, M. Yoon, G. Eres, C. Rouleau, K. Xiao, J. Jackson, J. Readle, M. Regmi, N. Thonnard, in Lasers in Materials Science (Springer International Publishing, 2014), pp. 143–173Google Scholar
  65. 65.
    W.D. Tennyson, M.K. Tian, A.B. Papandrew, C.M. Rouleau, A.A. Puretzky, B.T. Sneed, K.L. More, G.M. Veith, G. Duscher, T.A. Zawodzinski, D.B. Geohegan, Carbon 123, 605–615 (2017)CrossRefGoogle Scholar
  66. 66.
    R. Yuge, S. Bandow, M. Yudasaka, K. Toyama, S. Iijima, T. Manako, Carbon 111, 675–680 (2017)CrossRefGoogle Scholar
  67. 67.
    L.E. Jones, P.A. Thrower, Carbon 29(2), 251–269 (1991)CrossRefGoogle Scholar
  68. 68.
    B. Qin, T.F. Zhang, H.H. Chen, Y.F. Ma, Carbon 102, 494–498 (2016)CrossRefGoogle Scholar
  69. 69.
    A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Lett. 8(7), 2012–2016 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    A. Chaturvedi, A. Slabon, P. Hu, S.L. Feng, K.K. Zhang, R.R. Prabhakar, C. Kloc, J. Cryst. Growth 450, 140–147 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    M.W. Smith, K.C. Jordan, C. Park, J.W. Kim, P. T. Lillehei, R. Crooks, J. S. Harrison, Nanotechnology 20(50), 505604 (2009)CrossRefGoogle Scholar
  72. 72.
    A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Nano Lett. 14(8), 4881–4886 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    K.S. Kim, C.T. Kingston, A. Hrdina, M.B. Jakubinek, J.W. Guan, M. Plunkett, B. Simard, ACS Nano 8(6), 6211–6220 (2014)CrossRefGoogle Scholar
  74. 74.
    Y. Miyamoto, H. Zhang, D. Tomanek, Phys. Rev. Lett. 104(20), 208302 (2010)Google Scholar
  75. 75.
    S. Dhar, A.R. Barman, G.X. Ni, X. Wang, X.F. Xu, Y. Zheng, S. Tripathy, Ariando, A. Rusydi, K.P. Loh, M. Rubhausen, A.H. Castro Neto, B. Ozyilmaz, T. Venkatesan, AIP. Adv. 1(2), 022109 (2011)Google Scholar
  76. 76.
    Z. Lin, X.H. Ye, J.P. Han, Q. Chen, P.X. Fan, H. J. Zhang, D. Xie, H.W. Zhu, M.L. Zhong, Sci. Rep-UK 5, 11662 (2015)Google Scholar
  77. 77.
    A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Nano Lett. 12(6), 3187–3192 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRefGoogle Scholar
  79. 79.
    X.S. Wu, M. Sprinkle, X.B. Li, F. Ming, C. Berger, W.A. de Heer, Phys. Rev. Lett. 101(2), 026801 (2008)Google Scholar
  80. 80.
    Z.Q. Wei, D.B. Wang, S. Kim, S.Y. Kim, Y.K. Hu, M.K. Yakes, A.R. Laracuente, Z.T. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.E. Sheehan, E. Riedo, Science 328(5984), 1373–1376 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    A.C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, Phys. Rev. Lett. 97(18), 187401 (2006)ADSCrossRefGoogle Scholar
  82. 82.
    D.A. Sokolov, C.M. Rouleau, D.B. Geohegan, T.M. Orlando, Carbon 53, 81–89 (2013)CrossRefGoogle Scholar
  83. 83.
    R. Arul, R.N. Oosterbeek, J. Robertson, G.Y. Xu, J.Y. Jin, M.C. Simpson, Carbon 99, 423–431 (2016)CrossRefGoogle Scholar
  84. 84.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335(6074), 1326–1330 (2012)ADSCrossRefGoogle Scholar
  85. 85.
    M.F. El-Kady, R.B. Kaner, Nat. Commun. 4, 1475 (2013)Google Scholar
  86. 86.
    W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L.J. Ci, R. Vajtai, Q. Zhang, B.Q. Wei, P.M. Ajayan, Nat. Nanotechnol. 6(8), 496–500 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    V. Eswaraiah, S.S.J. Aravind, S. Ramaprabhu, J. Mater. Chem. 21(19), 6800–6803 (2011)CrossRefGoogle Scholar
  88. 88.
    M. Schumann, R. Sauerbrey, M.C. Smayling, Appl. Phys. Lett. 58(4), 428–430 (1991)ADSCrossRefGoogle Scholar
  89. 89.
    J. Lin, Z.W. Peng, Y.Y. Liu, F. Ruiz-Zepeda, R. Q. Ye, E.L.G. Samuel, M.J. Yacaman, B.I. Yakobson, J.M. Tour, Nat. Commun. 5, 5714 (2014)Google Scholar
  90. 90.
    P.J.F. Harris, Crit. Rev. Solid State 30(4), 235–253 (2005)CrossRefGoogle Scholar
  91. 91.
    B.J. Simonds, H.J. Meadows, S. Misra, C. Ferekides, P.J. Dale, M.A. Scarpulla, J. Photon Energy 5(1), 050999 (2015)Google Scholar
  92. 92.
    M.E. McConney, N.R. Glavin, A.T. Juhl, M.H. Check, M.F. Durstock, A.A. Voevodin, T.E. Shelton, J.E. Bultman, J.J. Hu, M.L. Jespersen, M.K. Gupta, R.D. Naguy, J.G. Colborn, A. Haque, P.T. Hagerty, R.E. Stevenson, C. Muratore, J. Mater. Res. 31(7), 967–974 (2016)ADSCrossRefGoogle Scholar
  93. 93.
    A.V. Rafael, R. Rahul, M. Christopher, B. Elisabeth, A.R. Joshua, M. Benji, R.G. Nicholas, 2D Mater 5(1), 011009 (2018)Google Scholar
  94. 94.
    H. Kwon, W. Choi, D. Lee, Y. Lee, J. Kwon, B. Yoo, C.P. Grigoropoulos, S. Kim, Nano Res. 7(8), 1137–1145 (2014)CrossRefGoogle Scholar
  95. 95.
    K.A.N. Duerloo, Y. Li, E.J. Reed, Nat. Commun. 5, 4214 (2014)Google Scholar
  96. 96.
    S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok, D.H. Keum, J. Baik, D.H. Choe, K.J. Chang, K. Suenaga, S.W. Kim, Y.H. Lee, H. Yang, Science 349(6248), 625–628 (2015)ADSCrossRefGoogle Scholar
  97. 97.
    Y. Ma, P. M. Ajayan, S. Yang, Y. Gong, Small 1801606 (2018)Google Scholar
  98. 98.
    H.L. Zeng, B.R. Zhu, K. Liu, J.H. Fan, X.D. Cui, Q.M. Zhang, Phys. Rev. B 86(24), 241301(R) (2012)Google Scholar
  99. 99.
    X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, A.C. Ferrari, P.H. Tan, Phys. Rev. B 87(11), 115413 (2013)Google Scholar
  100. 100.
    Y.Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q.H. Xiong, Nano Lett. 13(3), 1007–1015 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    A.A. Puretzky, L.B. Liang, X.F. Li, K. Xiao, K. Wang, M. Mahjouri-Samani, L. Basile, J.C. Idrobo, B.G. Sumpter, V. Meunier, D.B. Geohegan, ACS Nano 9(6), 6333–6342 (2015)CrossRefGoogle Scholar
  102. 102.
    A.A. Puretzky, L.B. Liang, X.F. Li, K. Xiao, B.G. Sumpter, V. Meunier, D.B. Geohegan, ACS Nano 10(2), 2736–2744 (2016)CrossRefGoogle Scholar
  103. 103.
    S.X. Huang, L.B. Liang, X. Ling, A.A. Puretzky, D.B. Geohegan, B.G. Sumpter, J. Kong, V. Meunier, M.S. Dresselhaus, Nano Lett. 16(2), 1435–1444 (2016)ADSCrossRefGoogle Scholar
  104. 104.
    X. Luo, X. Lu, C.X. Cong, T. Yu, Q.H. Xiong, S. Y. Quek, Sci. Rep-UK 5, 14565 (2015)Google Scholar
  105. 105.
    C.H. Lui, Z.P. Ye, C. Keiser, E.B. Barros, R. He, Appl. Phys. Lett. 106(4), 041904 (2015)ADSCrossRefGoogle Scholar
  106. 106.
    L.B. Liang, A.A. Puretzky, B.G. Sumpter, V. Meunier, Nanoscale 9(40), 15340–15355 (2017)CrossRefGoogle Scholar
  107. 107.
    L. Liang, J. Zhang, B.G. Sumpter, Q. Tan, P.H. Tan, V. Meunier, ACS Nano 11(12), 11777–11802 (2017)CrossRefGoogle Scholar
  108. 108.
    A.L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov, L.B. Glebov, Proc. SPIE 8428, 1–11 (2012)Google Scholar
  109. 109.
    P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, A.C. Ferrari, Nat. Mater. 11(4), 294–300 (2012)ADSCrossRefGoogle Scholar
  110. 110.
    C.H. Lui, T.F. Heinz, Phys. Rev. B 87(12), 121404 (2013)Google Scholar
  111. 111.
    J.B. Wu, X. Zhang, M. Ijas, W.P. Han, X.F. Qiao, X.L. Li, D.S. Jiang, A.C. Ferrari, P.H. Tan, Nat. Commun. 5, 5309 (2014)Google Scholar
  112. 112.
    J.B. Wu, Z.X. Hu, X. Zhang, W.P. Han, Y. Lu, W. Shi, X.F. Qiao, M. Ijias, S. Milana, W. Ji, A.C. Ferrari, P.H. Tan, ACS Nano 9(7), 7440–7449 (2015)CrossRefGoogle Scholar
  113. 113.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4(5), 2695–2700 (2010)CrossRefGoogle Scholar
  114. 114.
    K.H. Liu, L.M. Zhang, T. Cao, C.H. Jin, D.A. Qiu, Q. Zhou, A. Zettl, P.D. Yang, S.G. Louie, F. Wang, Nat. Commun. 5, 4966 (2014)Google Scholar
  115. 115.
    X. Lu, M.I.B. Utama, J.H. Lin, X. Luo, Y.Y. Zhao, J. Zhang, S.T. Pantelides, W. Zhou, S.Y. Quek, Q.H. Xiong, Adv. Mater. 27(30), 4502–4508 (2015)CrossRefGoogle Scholar
  116. 116.
    C.H. Lui, Z.P. Ye, C. Ji, K.C. Chiu, C.T. Chou, T.I. Andersen, C. Means-Shively, H. Anderson, J.M. Wu, T. Kidd, Y.H. Lee, R. He, Phys. Rev. B 91(16), 165403 (2015)Google Scholar
  117. 117.
    X. Ling, L.B. Liang, S.X. Huang, A.A. Puretzky, D.B. Geohegan, B.G. Sumpter, J. Kong, V. Meunier, M.S. Dresselhaus, Nano Lett. 15(6), 4080–4088 (2015)ADSCrossRefGoogle Scholar
  118. 118.
    X. Luo, X. Lu, G.K.W. Koon, A.H.C. Neto, B. Ozyilmaz, Q.H. Xiong, S.Y. Quek, Nano Lett. 15(6), 3931–3938 (2015)ADSCrossRefGoogle Scholar
  119. 119.
    X.F. Qiao, J.B. Wu, L.W. Zhou, J.S. Qiao, W. Shi, T. Chen, X. Zhang, J. Zhang, W. Ji, P.H. Tan, Nanoscale 8(15), 8324–8332 (2016)ADSCrossRefGoogle Scholar
  120. 120.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105(13), 136805 (2010)Google Scholar
  121. 121.
    A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10(4), 1271–1275 (2010)ADSCrossRefGoogle Scholar
  122. 122.
    Y.Y. Li, Z.M. Qi, M. Liu, Y.Y. Wang, X.R. Cheng, G.B. Zhang, L.S. Sheng, Nanoscale 6(24), 15248–15254 (2014)ADSCrossRefGoogle Scholar
  123. 123.
    M. Buscema, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Nano Res. 7(4), 561–571 (2014)CrossRefGoogle Scholar
  124. 124.
    N. Scheuschner, O. Ochedowski, A.M. Kaulitz, R. Gillen, M. Schleberger, J. Maultzsch, Phys. Rev. B 89(12), 125406 (2014)Google Scholar
  125. 125.
    K.F. Mak, K.L. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan, Nat. Mater. 12(3), 207–211 (2013)ADSCrossRefGoogle Scholar
  126. 126.
    Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K.H. Zhang, Y.F. Sun, X.F. Li, N.J. Borys, H.T. Yuan, S.K. Fullerton-Shirey, A. Chernikov, H. Zhao, S. McDonnell, A.M. Lindenberg, K. Xiao, B.J. LeRoy, M. Drndic, J.C.M. Hwang, J. Park, M. Chhowalla, R.E. Schaak, A. Javey, M.C. Hersam, J. Robinson, M. Terrones, 2D Mater 3(4), 022002 (2016)Google Scholar
  127. 127.
    M. Amani, D.H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S.R. Madhvapathy, R. Addou, K.C. Santosh, M. Dubey, K. Cho, R.M. Wallace, S.C. Lee, J.H. He, J.W. Ager, X. Zhang, E. Yablonovitch, A. Javey, Science 350(6264), 1065–1068 (2015)ADSCrossRefGoogle Scholar
  128. 128.
    H.Y. Nan, Z.L. Wang, W.H. Wang, Z. Liang, Y. Lu, Q. Chen, D.W. He, P.H. Tan, F. Miao, X.R. Wang, J.L. Wang, Z.H. Ni, ACS Nano 8(6), 5738–5745 (2014)CrossRefGoogle Scholar
  129. 129.
    T. Kato, T. Kaneko, ACS Nano 8(12), 12777–12785 (2014)CrossRefGoogle Scholar
  130. 130.
    M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.Y. Veuillen, J. Marcus, P. Kossacki, M. Potemski, Nat. Nanotechnol. 10(6), 503–506 (2015)ADSCrossRefGoogle Scholar
  131. 131.
    Y.M. He, G. Clark, J.R. Schaibley, Y. He, M.C. Chen, Y.J. Wei, X. Ding, Q. Zhang, W. Yao, X.D. Xu, C.Y. Lu, J.W. Pan, Nat. Nanotechnol. 10(6), 497–502 (2015)ADSCrossRefGoogle Scholar
  132. 132.
    A. Srivastava, M. Sidler, A.V. Allain, D.S. Lembke, A. Kis, A. Imamoglu, Nat. Nanotechnol. 10(6), 491–496 (2015)ADSCrossRefGoogle Scholar
  133. 133.
    W.M. Parkin, A. Balan, L.B. Liang, P.M. Das, M. Lamparski, C.H. Naylor, J.A. Rodriguez-Manzo, A.T.C. Johnson, V. Meunier, M. Drndic, ACS Nano 10(4), 4134–4142 (2016)CrossRefGoogle Scholar
  134. 134.
    P.K. Chow, R.B. Jacobs-Gedrim, J. Gao, T.M. Lu, B. Yu, H. Terrones, N. Koratkar, ACS Nano 9(2), 1520–1527 (2015)CrossRefGoogle Scholar
  135. 135.
    X. Li, A.A. Puretzky, X.H. Sang, K.C. Santosh, M.K. Tian, F. Ceballos, M. Mahjouri-Samani, K. Wang, R.R. Unocic, H. Zhao, G. Duscher, V.R. Cooper, C.M. Rouleau, D.B. Geohegan, K. Xiao, Adv. Funct. Mater 27(19), 1603850 (2017)Google Scholar
  136. 136.
    N. Kumar, S. Najmaei, Q.N. Cui, F. Ceballos, P.M. Ajayan, J. Lou, H. Zhao, Phys. Rev. B 87(16), 161403(R) (2013)Google Scholar
  137. 137.
    L.M. Malard, T.V. Alencar, A.P.M. Barboza, K.F. Mak, A.M. de Paula, Phys. Rev. B 87(20), 201401(R) (2013)Google Scholar
  138. 138.
    C. Janisch, Y.X. Wang, D. Ma, N. Mehta, A.L. Elias, N. Perea-Lopez, M. Terrones, V. Crespi, Z.W. Liu, Sci. Rep-UK 4, 5530 (2014)Google Scholar
  139. 139.
    W.J. Jie, X. Chen, D. Li, L. Xie, Y.Y. Hui, S.P. Lau, X.D. Cui, J.H. Hao, Angew. Chem. Int. Edit. 54(4), 1185–1189 (2015)CrossRefGoogle Scholar
  140. 140.
    J. Ribeiro-Soares, C. Janisch, Z. Liu, A.L. Elias, M.S. Dresselhaus, M. Terrones, L.G. Cancado, A. Jorio, 2D Mater 2(4), 045015 (2015)Google Scholar
  141. 141.
    Y.L. Li, Y. Rao, K.F. Mak, Y.M. You, S.Y. Wang, C.R. Dean, T.F. Heinz, Nano Lett. 13(7), 3329–3333 (2013)ADSCrossRefGoogle Scholar
  142. 142.
    C.J. Kim, L. Brown, M.W. Graham, R. Hovden, R.W. Havener, P.L. McEuen, D.A. Muller, J. Park, Nano Lett. 13(11), 5660–5665 (2013)ADSCrossRefGoogle Scholar
  143. 143.
    T. Jiang, H.R. Liu, D. Huang, S. Zhang, Y.G. Li, X.G. Gong, Y.R. Shen, W.T. Liu, S.W. Wu, Nat. Nanotechnol. 9(10), 825–829 (2014)ADSCrossRefGoogle Scholar
  144. 144.
    W.T. Hsu, Z.A. Zhao, L.J. Li, C.H. Chen, M.H. Chiu, P.S. Chang, Y.C. Chou, W.H. Chang, ACS Nano 8(3), 2951–2958 (2014)CrossRefGoogle Scholar
  145. 145.
    J.X. Cheng, T. Jiang, Q.Q. Ji, Y. Zhang, Z.M. Li, Y.W. Shan, Y.F. Zhang, X.G. Gong, W.T. Liu, S.W. Wu, Adv. Mater. 27(27), 4069–4074 (2015)CrossRefGoogle Scholar
  146. 146.
    R. Wang, B.A. Ruzicka, N. Kumar, M.Z. Bellus, H.Y. Chiu, H. Zhao, Phys. Rev. B 86(4), 045406 (2012)Google Scholar
  147. 147.
    H.Y. Shi, R.S. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H.G. Xing, L.B. Huang, ACS Nano 7(2), 1072–1080 (2013)CrossRefGoogle Scholar
  148. 148.
    Q.S. Wang, S.F. Ge, X. Li, J. Qiu, Y.X. Ji, J. Feng, D. Sun, ACS Nano 7(12), 11087–11093 (2013)CrossRefGoogle Scholar
  149. 149.
    Z.G. Nie, R. Long, L.F. Sun, C.C. Huang, J. Zhang, Q.H. Xiong, D.W. Hewak, Z.X. Shen, O.V. Prezhdo, Z.H. Loh, ACS Nano 8(10), 10931–10940 (2014)CrossRefGoogle Scholar
  150. 150.
    H.N. Wang, C.J. Zhang, F. Rana, Nano Lett. 15(1), 339–345 (2015)ADSCrossRefGoogle Scholar
  151. 151.
    H.N. Wang, C.J. Zhang, W.M. Chan, C. Manolatou, S. Tiwari, F. Rana, Phys. Rev. B 93(4), 045407 (2016)Google Scholar
  152. 152.
    N. Kumar, Q.N. Cui, F. Ceballos, D.W. He, Y.S. Wang, H. Zhao, Phys. Rev. B 89(12), 125427 (2014)Google Scholar
  153. 153.
    C. Mai, Y.G. Semenov, A. Barrette, Y.F. Yu, Z.H. Jin, L.Y. Cao, K.W. Kim, K. Gundogdu, Phys. Rev. B 90(4), 041414(R) (2014)Google Scholar
  154. 154.
    J.Q. He, D.W. He, Y.S. Wang, Q.N. Cui, F. Ceballos, H. Zhao, Nanoscale 7(21), 9526–9531 (2015)ADSCrossRefGoogle Scholar
  155. 155.
    A. Boulesbaa, B. Huang, K. Wang, M.W. Lin, M. Mahjouri-Samani, C. Rouleau, K. Xiao, M. Yoon, B. Sumpter, A. Puretzky, D. Geohegan, Phys. Rev. B 92(11), 115443 (2015)Google Scholar
  156. 156.
    A. Boulesbaa, V.E. Babicheva, K. Wang, I.I. Kravchenko, M.W. Lin, M. Mahjouri-Samani, C.B. Jacobs, A.A. Puretzky, K. Xiao, I. Ivanov, C.M. Rouleau, D.B. Geohegan, A Photonics 3(12), 2389–2395 (2016)CrossRefGoogle Scholar
  157. 157.
    Q.N. Cui, F. Ceballos, N. Kumar, H. Zhao, ACS Nano 8(3), 2970–2976 (2014)CrossRefGoogle Scholar
  158. 158.
    C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schuller, T. Korn, R. Huber, Nat Mater 14(9), 889–894 (2015)Google Scholar
  159. 159.
    Q.N. Cui, J.Q. He, M.Z. Bellus, M. Mirzokarimov, T. Hofmann, H.Y. Chiu, M. Antonik, D.W. He, Y.S. Wang, H. Zhao, Small 11(41), 5565–5571 (2015)CrossRefGoogle Scholar
  160. 160.
    K.P. Wang, B.M. Szydlowska, G.Z. Wang, X.Y. Zhang, J.J. Wang, J.J. Magan, L. Zhang, J.N. Coleman, J. Wang, W.J. Blau, ACS Nano 10(7), 6923–6932 (2016)CrossRefGoogle Scholar
  161. 161.
    F. Ceballos, Q.N. Cui, M.Z. Bellus, H. Zhao, Nanoscale 8(22), 11681–11688 (2016)ADSCrossRefGoogle Scholar
  162. 162.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294(5546), 1488–1495 (2001)ADSCrossRefGoogle Scholar
  163. 163.
    X.D. Xu, W. Yao, D. Xiao, T.F. Heinz, Nat. Phys. 10(5), 343–350 (2014)CrossRefGoogle Scholar
  164. 164.
    C. Mai, A. Barrette, Y.F. Yu, Y.G. Semenov, K.W. Kim, L.Y. Cao, K. Gundogdu, Nano Lett. 14(1), 202–206 (2014)ADSCrossRefGoogle Scholar
  165. 165.
    P. Rivera, K.L. Seyler, H.Y. Yu, J.R. Schaibley, J.Q. Yan, D.G. Mandrus, W. Yao, X.D. Xu, Science 351(6274), 688–691 (2016)ADSCrossRefGoogle Scholar
  166. 166.
    X.P. Hong, J. Kim, S.F. Shi, Y. Zhang, C.H. Jin, Y.H. Sun, S. Tongay, J.Q. Wu, Y.F. Zhang, F. Wang, Nat. Nanotechnol. 9(9), 682–686 (2014)ADSCrossRefGoogle Scholar
  167. 167.
    F. Ceballos, M.Z. Bellus, H.Y. Chiu, H. Zhao, ACS Nano 8(12), 12717–12724 (2014)CrossRefGoogle Scholar
  168. 168.
    K. Wang, B. Huang, M. Tian, F. Ceballos, M.W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A.A. Puretzky, C.M. Rouleau, M. Yoon, H. Zhao, K. Xiao, G. Duscher, D.B. Geohegan, ACS Nano 10(7), 6612–6622 (2016)CrossRefGoogle Scholar
  169. 169.
    Q. Zheng, W.A. Saidi, Y. Xie, Z. Lan, O.V. Prezhdo, H. Petek, J. Zhao, Nano Lett. 17(10),6435–6442 (2017)ADSCrossRefGoogle Scholar
  170. 170.
    A. Boulesbaa, K. Wang, M. Mahjouri-Samani, M. Tian, A.A. Puretzky, I. Ivanov, C.M. Rouleau, K. Xiao, B.G. Sumpter, D.B. Geohegan, J. Am. Chem. Soc. 138(44), 14713–14719 (2016)CrossRefGoogle Scholar
  171. 171.
    A.A. Puretzky, I.A. Merkulov, C.M. Rouleau, G. Eres, D.B. Geohegan, Carbon 79, 256–264 (2014)CrossRefGoogle Scholar
  172. 172.
    P. Nikolaev, D. Hooper, N. Perea-Lopez, M. Terrones, B. Maruyama, ACS Nano 8(10), 10214–10222 (2014)CrossRefGoogle Scholar
  173. 173.
    P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, B. Maruyama, NPJ Comput. Mater. 2, 16031 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • David B. Geohegan
    • 1
    Email author
  • Alex A. Puretzky
    • 1
  • Aziz Boulesbaa
    • 1
  • Gerd Duscher
    • 1
  • Gyula Eres
    • 1
  • Xufan Li
    • 1
  • Liangbo Liang
    • 1
  • Masoud Mahjouri-Samani
    • 1
  • Chris Rouleau
    • 1
  • Wesley Tennyson
    • 1
  • Mengkun Tian
    • 1
  • Kai Wang
    • 1
  • Kai Xiao
    • 1
  • Mina Yoon
    • 1
  1. 1.Functional Hybrid Nanomaterials Group Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations