The Human Microbiome in Health and Disease



At the microscopic scale, the human body becomes a complex ecosystem, harboring hundreds of millions of microorganisms on its surface and in its interior. This diverse and innumerable assemblage of organisms constitutes what is collectively referred to as the human microbiome. Increasingly, research is revealing a profound interrelationship between the health of an individual and the state of their microbiome. As distinct microbial communities can be localized to certain parts of the body, investigations have been launched to survey the significance of the gut, respiratory, reproductive tract, oral, and skin microbiomes. Underpinning this research is the belief that an improved understanding of the human microbiome will allow for the prevention and control of chronic diseases, the remediation of suboptimal health, and a potential revolution in medical technologies. Research into the interactions between the microbiome and health will hopefully lead to the development of microbiome-based medicine, capable of not only treating diseases but preventing them as well. In this chapter we will define, in greater depth, what the human microbiome is, what factors influence its composition, and how it relates to the gut, the immune system, brain development, obesity, and infection. Overall, we explore how something as small as one micron has the power to radically influence health, diet, and lifestyle.


Human microbiome Health Disease Inflammation Diet Antibiotics Fecal microbiota transplantation Oral microbiome Gut microbiome 


  1. 1.
    Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40.Google Scholar
  2. 2.
    Turnbaugh P, Ley R, Hamady M, Fraser-Liggett C, Knight R, Gordon J. The human microbiome project. Nature. 2007;449(7164):804–10.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Locey K, Lennon J. Scaling laws predict global microbial diversity. Proc Natl Acad Sci. 2016;113(21):5970–5.Google Scholar
  4. 4.
    Luckey T. Introduction to intestinal microecology. Am J Clin Nutr. 1972;25(12):1292–4.Google Scholar
  5. 5.
    Rosner J. Ten times more microbial cells than body cells in humans? Microbe Mag. 2014;9(2):47.Google Scholar
  6. 6.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf K, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Huttenhower C, Gevers D, Knight R, Abubucker S, Badger J, Chinwalla A, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.Google Scholar
  8. 8.
    Clarridge J. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004;17(4):840–62.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Woo P, Lau S, Teng J, Tse H, Yuen K. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14(10):908–34.PubMedGoogle Scholar
  10. 10.
    Galley J, Bailey M, Kamp Dush C, Schoppe-Sullivan S, Christian L. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS ONE. 2014;9(11):e113026.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Sharpton T. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci. 2014;5:209.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Cardona C, Weisenhorn P, Henry C, Gilbert J. Network-based metabolic analysis and microbial community modeling. Curr Opin Microbiol. 2016;31:124–31.Google Scholar
  13. 13.
    Sangwan N, Zarraonaindia I, Hampton-Marcell J, Ssegane H, Eshoo T, Rijal G, et al. Differential functional constraints cause strain-level endemism in polynucleobacter populations. mSystems. 2016;1(3):e00003–16.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Grice E, Segre J. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Grice E, Kong H, Conlan S, Deming C, Davis J, Young A, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lax S, Smith D, Hampton-Marcell J, Owens S, Handley K, Scott N, et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science. 2014;345(6200):1048–52.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hannigan G, Meisel J, Tyldsley A, Zheng Q, Hodkinson B, SanMiguel A, et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio. 2015;6(5):e01578–15.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lazarevic V, Whiteson K, Hernandez D, Francois P, Schrenzel J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics. 2010;11(1):523.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, Roeselers G. Shaping the oral microbiota through intimate kissing. Microbiome. 2014;2(1):41.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Caporaso J, Lauber C, Costello E, Berg-Lyons D, Gonzalez A, Stombaugh J, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12(5):R50.PubMedPubMedCentralGoogle Scholar
  21. 21.
    David L, Materna A, Friedman J, Campos-Baptista M, Blackburn M, Perrotta A, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014;15(7):R89.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Raveh-Sadka T, Thomas B, Singh A, Firek B, Brooks B, Castelle C, et al. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. elife. 2015;4:e05477.Google Scholar
  23. 23.
    Knights D, Ward T, McKinlay C, Miller H, Gonzalez A, McDonald D, et al. Rethinking “enterotypes”. Cell Host Microbe. 2014;16(4):433–7.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Jeffery I, Claesson M, O'Toole P, Shanahan F. Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol. 2012;10(9):591–2.Google Scholar
  25. 25.
    David L, Maurice C, Carmody R, Gootenberg D, Button J, Wolfe B, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2013;505(7484):559–63.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Vandeputte D, Falony G, Vieira-Silva S, Tito R, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2015;65(1):57–62.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ma B, Forney L, Ravel J. Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol. 2012;66(1):371–89.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Romero R, Hassan S, Gajer P, Tarca A, Fadrosh D, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2(1):4.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Xiao B, Niu X, Han N, Wang B, Du P, Na R, et al. Predictive value of the composition of the vaginal microbiota in bacterial vaginosis, a dynamic study to identify recurrence-related flora. Sci Rep. 2016;6(1):26674.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Donaldson G, Lee S, Mazmanian S. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2015;14(1):20–32.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Turnbaugh P, Hamady M, Yatsunenko T, Cantarel B, Duncan A, Ley R, et al. A core gut microbiome in obese and lean twins. Nature. 2008;457(7228):480–4.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Yatsunenko T, Rey F, Manary M, Trehan I, Dominguez-Bello M, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Stahringer S, Clemente J, Corley R, Hewitt J, Knights D, Walters W, et al. Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res. 2012;22(11):2146–52.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Goodrich J, Waters J, Poole A, Sutter J, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Albenberg L, Wu G. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146(6):1564–72.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Wu G, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh S, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–94.Google Scholar
  38. 38.
    Modi S, Collins J, Relman D. Antibiotics and the gut microbiota. J Clin Investig. 2014;124(10):4212–8.Google Scholar
  39. 39.
    Dethlefsen L, Relman D. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci. 2010;108(Supplement_1):4554–61.Google Scholar
  40. 40.
    Maurice C, Haiser H, Turnbaugh P. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152(1–2):39–50.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Trasande L, Blustein J, Liu M, Corwin E, Cox L, Blaser M. Infant antibiotic exposures and early-life body mass. Int J Obes. 2012;37(1):16–23.Google Scholar
  42. 42.
    Song S, Lauber C, Costello E, Lozupone C, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. elife. 2013;2:e00458.PubMedPubMedCentralGoogle Scholar
  43. 43.
    von Mutius E. The microbial environment and its influence on asthma prevention in early life. J Allergy Clin Immunol. 2016;137(3):680–9.Google Scholar
  44. 44.
    Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 2012;7(4):880–4.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Thaiss C, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler A, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514–29.Google Scholar
  47. 47.
    Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman J, et al. Unlocking the potential of metagenomics through replicated experimental design. Nat Biotechnol. 2012;30(6):513–20.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Fierer N, Lauber C, Zhou N, McDonald D, Costello E, Knight R. Forensic identification using skin bacterial communities. Proc Natl Acad Sci. 2010;107(14):6477–81.Google Scholar
  49. 49.
    Flores G, Caporaso J, Henley J, Rideout J, Domogala D, Chase J, et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 2014;15(12):531.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Gajer P, Brotman R, Bai G, Sakamoto J, Schutte U, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Sugihara G, May R, Ye H, Hsieh C, Deyle E, Fogarty M, et al. Detecting causality in complex ecosystems. Science. 2012;338(6106):496–500.Google Scholar
  52. 52.
    Knights D, Kuczynski J, Charlson E, Zaneveld J, Mozer M, Collman R, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8(9):761–3.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Larsen P, Field D, Gilbert J. Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods. 2012;9(6):621–5.Google Scholar
  54. 54.
    iHMP. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16(3):276–89.Google Scholar
  55. 55.
    Seedorf H, Griffin N, Ridaura V, Reyes A, Cheng J, Rey F, et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell. 2014;159(2):253–66.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kawamoto S, Maruya M, Kato L, Suda W, Atarashi K, Doi Y, et al. Foxp3+ T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41(1):152–65.Google Scholar
  57. 57.
    Koenig J, Spor A, Scalfone N, Fricker A, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci. 2010;108(Supplement_1):4578–85.Google Scholar
  58. 58.
    Weng M, Walker W. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013;4(03):203–14.Google Scholar
  59. 59.
    Maynard C, Elson C, Hatton R, Weaver C. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–41.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Martín R, Langa S, Reviriego C, Jimínez E, Marín M, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143(6):754–8.Google Scholar
  61. 61.
    Jakaitis B, Denning P. Commensal and probiotic bacteria may prevent NEC by maturing intestinal host defenses. Pathophysiology. 2014;21(1):47–54.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Weingarden A, González A, Vázquez-Baeza Y, Weiss S, Humphry G, Berg-Lyons D, et al. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome. 2015;3(1):10.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Kassam Z, Lee C, Yuan Y, Hunt R. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108(4):500–8.Google Scholar
  64. 64.
    Knights D, Parfrey L, Zaneveld J, Lozupone C, Knight R. Human-associated microbial signatures: examining their predictive value. Cell Host Microbe. 2011;10(4):292–6.Google Scholar
  65. 65.
    Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science. 2015;350(6263):aab3897.Google Scholar
  66. 66.
    McDonald D, Hornig M, Lozupone C, Debelius J, Gilbert J, Knight R. Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microb Ecol Health Dis. 2015;26(1):26555.PubMedGoogle Scholar
  67. 67.
    Kang D, Park J, Ilhan Z, Wallstrom G, LaBaer J, Adams J, et al. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8(7):e68322.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hsiao E, McBride S, Hsien S, Sharon G, Hyde E, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Knights D, Silverberg M, Weersma R, Gevers D, Dijkstra G, Huang H, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014;6(12):107.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Uusitalo U, Liu X, Yang J, Aronsson C, Hummel S, Butterworth M, et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 2016;170(1):20.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Arrieta M, Stiemsma L, Dimitriu P, Thorson L, Russell S, Yurist-Doutsch S, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.Google Scholar
  72. 72.
    Ley R, Backhed F, Turnbaugh P, Lozupone C, Knight R, Gordon J. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005;102(31):11070–5.Google Scholar
  73. 73.
    Abreu N, Nagalingam N, Song Y, Roediger F, Pletcher S, Goldberg A, et al. Sinus Microbiome diversity depletion and corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med. 2012;4(151):151ra124.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Morgan X, Tickle T, Sokol H, Gevers D, Devaney K, Ward D, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Turnbaugh P, Bäckhed F, Fulton L, Gordon J. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–23.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Koeth R, Wang Z, Levison B, Buffa J, Org E, Sheehy B, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Gregory J, Buffa J, Org E, Wang Z, Levison B, Zhu W, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2014;290(9):5647–60.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2010;331(6015):337–41.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Ivanov I, Atarashi K, Manel N, Brodie E, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13(6):668–77.Google Scholar
  81. 81.
    Fujimura K, Demoor T, Rauch M, Faruqi A, Jang S, Johnson C, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci. 2013;111(2):805–10.Google Scholar
  82. 82.
    Quigley E. Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Nat Rev Gastroenterol Hepatol. 2017;14(5):315–20.Google Scholar
  83. 83.
    Seekatz A, Young V. Clostridium difficile and the microbiota. J Clin Investig. 2014;124(10):4182–9.Google Scholar
  84. 84.
    Bajaj J, Heuman D, Sanyal A, Hylemon P, Sterling R, Stravitz R, et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS ONE. 2013;8(4):e60042.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Oelschlaeger T. Mechanisms of probiotic actions – a review. Int J Med Microbiol. 2010;300(1):57–62.Google Scholar
  86. 86.
    Kristensen N, Bryrup T, Allin K, Nielsen T, Hansen T, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):52.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Maldonado-Gómez M, Martínez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe. 2016;20(4):515–26.Google Scholar
  88. 88.
    Berry D. Making it stick: a compelling case for precision microbiome reconstitution. Cell Host Microbe. 2016;20(4):415–7.Google Scholar
  89. 89.
    Gibson G, Roberfroid M. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 2018;125(6):1401–12.Google Scholar
  90. 90.
    Slavin J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients. 2013;5(4):1417–35.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Subramanian S, Blanton L, Frese S, Charbonneau M, Mills D, Gordon J. Cultivating healthy growth and nutrition through the gut microbiota. Cell. 2015;161(1):36–48.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Haarman M, Knol J. Quantitative real-time PCR assays to identify and quantify fecal bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol. 2005;71(5):2318–24.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Bezkorovainy A. Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr. 2001;73(2):399s–405s.Google Scholar
  94. 94.
    Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss C, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6.Google Scholar
  95. 95.
    Russell G, Kaplan J, Youngster I, Baril-Dore M, Schindelar L, Hohmann E, et al. Fecal transplant for recurrent clostridium difficile infection in children with and without inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2014;58(5):588–92.Google Scholar
  96. 96.
    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal E, de Vos W, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.Google Scholar
  97. 97.
    Gilbert J, Quinn R, Debelius J, Xu Z, Morton J, Garg N, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535(7610):94–103.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of ChicagoChicagoUSA
  2. 2.Biosciences Division (BIO)Argonne National LaboratoryLemontUSA
  3. 3.SurgeryUniversity of Chicago Medical CenterChicagoUSA
  4. 4.Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations