Abstract
We introduce the Poincaré polynomial of a linear q-ary code and its relation to the corresponding weight enumerator. The question of whether the Poincaré polynomial is a complete invariant is answered affirmatively for q = 2, 3 and negatively for q ≥ 4. Finally we determine this polynomial for MDS codes and, by means of a recursive formula, for binary Reed-Muller codes.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969)
Blackmore, T., Norton, G.H.: Matrix-product codes over \(\mathbb {F}_q\). Appl. Algebra Eng. Commun. Comput. 12, 477–500 (2001)
Brylawski, T.H., Lucas, D.: Uniquely representable combinatorial geometries. In: Teorie Combinatorie. Proceedings of the 1973 International Colloquium, pp. 83–104. Accademia Nazionale del Lincei, Rome (1976)
Campillo, A., Delgado, F., Gusein-Zade S.: Poincaré series of a rational surface singularity. Invent. Math. 155 45–53 (2004)
Campillo, A., Delgado, F., Gusein-Zade S.: Poincaré series of curves on rational surface singularities. Comment. Math. Helvetici 80, 95–102 (2005)
Campillo, A., Delgado, F., Gusein-Zade, S.: Multiindex filtrations and motivic Poincaré series. Monatshefte. Math. 150, 193–209 (2007)
Campillo, A., Delgado, F., Gusein-Zade S., Hernando, F.: Poincaré series of collections of plane valuations. Int. J. Math. 21, 1461–1473 (2010)
Campillo, A., Delgado, F., Gusein-Zade, S.: Equivariant Poincaré series of filtrations. Rev. Mat. Complut. 26, 241–251 (2013)
Campillo, A., Delgado, F., Gusein-Zade, S.: An equivariant Poincaré series of filtrations and monodromy of zeta functions. Rev. Mat. Complut. 28, 449–467 (2015)
Delgado, F., Moyano-Fernández, J.J.: On the relation between the generalized Poincaré series and the Stöhr zeta function. Proc. Am. Math. Soc. 137, 51–59 (2009)
Dür, A.: The automorphism groups of Reed-Solomon codes. J. Comb. Theory Ser. A 44(1), 69–82 (1987)
Galindo, C., Monserrat, F.: The Poincaré series of multiplier ideals of a simple complete ideal in a local ring of a smooth surface. Adv. Math. 225, 1046–1068 (2010)
Hernando, F., Ruano, D.: New linear codes from matrix-product codes with polynomial units. Adv. Math. Commun. 4, 363–367 (2010)
Hernando, F., Ruano, D.: Decoding of matrix-product codes. J. Algebra Appl. 12, 1250185 (2013)
Hernando, F., Lally, K., Ruano, D.: Construction and decoding of matrix-product codes from nested codes. Appl. Algebra Eng. Commun. Comput. 20, 497–507 (2009)
Hernando, F., Høholdt, T., Ruano, D.: List decoding of matrix-product codes from nested codes: an application to quasi-cyclic codes. Adv. Math. Commun. 6, 259–272 (2012)
Jurrius, R., Pellikaan, R.: Codes, arrangements and matroids. In: Martinez-Moro, E. (ed.) Algebraic Geometry Modeling in Information Theory. Series on Coding Theory and Cryptology, vol. 8, pp. 219–325. World Scientific, Hackensack (2013)
Kahn, J.: On the uniqueness of matroid representations over GF(4). Bull. Lond. Math. Soc. 20, 5–10 (1988)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland Publishing, Amsterdam/New York (1977)
Pellikaan, R., Wu, X.-W., Bulygin, S., Jurrius, R.: Codes, Cryptology and Curves with Computer Algebra. Cambridge University Press, Cambridge (2017)
Roman, S.: Coding and Information Theory. Springer, New York (1992)
Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Chapman, R. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 327, pp. 173–226. Cambridge University Press, Cambridge (2005)
Tsfasman, M.A., Vlǎdut, S.G.: Algebraic-Geometric Codes. Kluwer Academic Publishers, Dordrecht (1991)
Tsfasman, M.A., Vlǎdut, S.G., Nogin, D.: Algebraic Geometric Codes: Basic Notions. Mathematical Surveys and Monographs, vol. 139. American Mathematical Society, Providence (2007)
Acknowledgements
We like to thank Rudi Pendavingh for the given information about unique representable matroids.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Galindo, C., Hernando, F., Monserrat, F., Pellikaan, R. (2018). The Poincaré Polynomial of a Linear Code. In: Greuel, GM., Narváez Macarro, L., Xambó-Descamps, S. (eds) Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Springer, Cham. https://doi.org/10.1007/978-3-319-96827-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-96827-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96826-1
Online ISBN: 978-3-319-96827-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)