Skip to main content

The Poincaré Polynomial of a Linear Code

  • 798 Accesses

Abstract

We introduce the Poincaré polynomial of a linear q-ary code and its relation to the corresponding weight enumerator. The question of whether the Poincaré polynomial is a complete invariant is answered affirmatively for q = 2, 3 and negatively for q ≥ 4. Finally we determine this polynomial for MDS codes and, by means of a recursive formula, for binary Reed-Muller codes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  2. Blackmore, T., Norton, G.H.: Matrix-product codes over \(\mathbb {F}_q\). Appl. Algebra Eng. Commun. Comput. 12, 477–500 (2001)

    Google Scholar 

  3. Brylawski, T.H., Lucas, D.: Uniquely representable combinatorial geometries. In: Teorie Combinatorie. Proceedings of the 1973 International Colloquium, pp. 83–104. Accademia Nazionale del Lincei, Rome (1976)

    Google Scholar 

  4. Campillo, A., Delgado, F., Gusein-Zade S.: Poincaré series of a rational surface singularity. Invent. Math. 155 45–53 (2004)

    CrossRef  Google Scholar 

  5. Campillo, A., Delgado, F., Gusein-Zade S.: Poincaré series of curves on rational surface singularities. Comment. Math. Helvetici 80, 95–102 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Campillo, A., Delgado, F., Gusein-Zade, S.: Multiindex filtrations and motivic Poincaré series. Monatshefte. Math. 150, 193–209 (2007)

    CrossRef  MathSciNet  Google Scholar 

  7. Campillo, A., Delgado, F., Gusein-Zade S., Hernando, F.: Poincaré series of collections of plane valuations. Int. J. Math. 21, 1461–1473 (2010)

    CrossRef  Google Scholar 

  8. Campillo, A., Delgado, F., Gusein-Zade, S.: Equivariant Poincaré series of filtrations. Rev. Mat. Complut. 26, 241–251 (2013)

    CrossRef  MathSciNet  Google Scholar 

  9. Campillo, A., Delgado, F., Gusein-Zade, S.: An equivariant Poincaré series of filtrations and monodromy of zeta functions. Rev. Mat. Complut. 28, 449–467 (2015)

    CrossRef  MathSciNet  Google Scholar 

  10. Delgado, F., Moyano-Fernández, J.J.: On the relation between the generalized Poincaré series and the Stöhr zeta function. Proc. Am. Math. Soc. 137, 51–59 (2009)

    MATH  Google Scholar 

  11. Dür, A.: The automorphism groups of Reed-Solomon codes. J. Comb. Theory Ser. A 44(1), 69–82 (1987)

    CrossRef  MathSciNet  Google Scholar 

  12. Galindo, C., Monserrat, F.: The Poincaré series of multiplier ideals of a simple complete ideal in a local ring of a smooth surface. Adv. Math. 225, 1046–1068 (2010)

    CrossRef  MathSciNet  Google Scholar 

  13. Hernando, F., Ruano, D.: New linear codes from matrix-product codes with polynomial units. Adv. Math. Commun. 4, 363–367 (2010)

    CrossRef  MathSciNet  Google Scholar 

  14. Hernando, F., Ruano, D.: Decoding of matrix-product codes. J. Algebra Appl. 12, 1250185 (2013)

    CrossRef  MathSciNet  Google Scholar 

  15. Hernando, F., Lally, K., Ruano, D.: Construction and decoding of matrix-product codes from nested codes. Appl. Algebra Eng. Commun. Comput. 20, 497–507 (2009)

    CrossRef  MathSciNet  Google Scholar 

  16. Hernando, F., Høholdt, T., Ruano, D.: List decoding of matrix-product codes from nested codes: an application to quasi-cyclic codes. Adv. Math. Commun. 6, 259–272 (2012)

    CrossRef  MathSciNet  Google Scholar 

  17. Jurrius, R., Pellikaan, R.: Codes, arrangements and matroids. In: Martinez-Moro, E. (ed.) Algebraic Geometry Modeling in Information Theory. Series on Coding Theory and Cryptology, vol. 8, pp. 219–325. World Scientific, Hackensack (2013)

    CrossRef  Google Scholar 

  18. Kahn, J.: On the uniqueness of matroid representations over GF(4). Bull. Lond. Math. Soc. 20, 5–10 (1988)

    CrossRef  MathSciNet  Google Scholar 

  19. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland Publishing, Amsterdam/New York (1977)

    MATH  Google Scholar 

  20. Pellikaan, R., Wu, X.-W., Bulygin, S., Jurrius, R.: Codes, Cryptology and Curves with Computer Algebra. Cambridge University Press, Cambridge (2017)

    CrossRef  Google Scholar 

  21. Roman, S.: Coding and Information Theory. Springer, New York (1992)

    MATH  Google Scholar 

  22. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Chapman, R. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 327, pp. 173–226. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  23. Tsfasman, M.A., Vlǎdut, S.G.: Algebraic-Geometric Codes. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  24. Tsfasman, M.A., Vlǎdut, S.G., Nogin, D.: Algebraic Geometric Codes: Basic Notions. Mathematical Surveys and Monographs, vol. 139. American Mathematical Society, Providence (2007)

    Google Scholar 

Download references

Acknowledgements

We like to thank Rudi Pendavingh for the given information about unique representable matroids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Galindo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galindo, C., Hernando, F., Monserrat, F., Pellikaan, R. (2018). The Poincaré Polynomial of a Linear Code. In: Greuel, GM., Narváez Macarro, L., Xambó-Descamps, S. (eds) Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Springer, Cham. https://doi.org/10.1007/978-3-319-96827-8_23

Download citation