Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-1-0—a computer algebra system for polynomial computations (2016). http://www.singular.uni-kl.de
Humenberger, A., Jaroschek, M., Kovács, L.: Invariant generation for multi-path loops with polynomial assignments. In: Dillig, I., Palsberg, J. (eds.) VMCAI. LNCS, vol. 10747, pp. 226–246. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8_11
CrossRef
Google Scholar
Kovács, L.: Aligator: a mathematica package for invariant generation (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 275–282. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_22
CrossRef
Google Scholar
Meurer, A., Smith, C.P., Paprocki, M., Čertík, O., Kirpichev, S.B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger, B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M.J., Terrel, A.R., Roučka, S., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., Scopatz, A.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103 (2017). https://doi.org/10.7717/peerj-cs.103
CrossRef
Google Scholar
Rodríguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple loops. J. Symb. Comput. 42(4), 443–476 (2007). https://doi.org/10.1016/j.jsc.2007.01.002
MathSciNet
CrossRef
MATH
Google Scholar
Wolfram, S.: An Elementary Introduction to the Wolfram Language. Wolfram Media Inc. (2017). https://www.wolfram.com/language/elementary-introduction/2nd-ed/