An Overview of the Plutons Magnetic Fabric Studies in the Hoggar Shield: Evolution of the Major Shear Zones During the Pan-African

  • B. HenryEmail author
  • M. E. M. Derder
  • S. Maouche
  • O. Nouar
  • M. Amenna
  • B. Bayou
  • A. Ouabadi
Part of the Springer Geology book series (SPRINGERGEOL)


The magnetic fabric obtained in the Hoggar shield on several plutons is related to various origins: simple flow, syn-deformation flow, stress field during late-magmatic stage and solid-state deformation. These results also evidenced the important role of hosting frame, acting as a more or less efficient “protection” against the effects on the magnetic fabric of the regional stress field. Combined studies, on neighboring sites of the main intrusion and of late-magmatic dykes crosscutting it, yield key-arguments about the acquisition age of this fabric. P′(Km) diagrams clearly highlight the strain gradient in plutons very close to shear zones. The fact that K1 axis is mainly a mineral lineation, at least in three plutons, is evidenced by the determination of the magnetic zone axis. The plutons AMS is associated with different Pan-African stages in the Hoggar: gneissification of Eburnean plutons, syn-thrust pluton emplacement, pluton emplacement under regional shearing context. Accordingly, the main movements along the major shear zones, related to the oblique collision of the Hoggar shield with the West African Craton, are contemporaneous of the first stages. Shearing context during the following period points out that this collision had still active effects, probably associated with a progressive change in orientation of the continental convergence.


Shear zones Plutons Magnetic susceptibility Anisotropy 



We are very grateful to the civil and military authorities at Tamanrasset and Djanet, to the “Office de la Recherche Géologique et Minière” (ORGM) at Tamanrasset, to the “Office du Parc National de l’Ahaggar” (OPNA) and the “Office National du Parc Culturel du Tassili N’ajjer”—ONPCTA for help during our field works. Thanks also to all people who helped us on the field, particularly H. Djellit, D. Belhai, A. Khaldi, A. Hemmi and M. Ayache. Special thanks also to all our drivers. Contributions of J. P. Liégeois and O. Bruguier were fundamental for the studies in the eastern Hoggar. J. P. Liégeois is also thanked for very constructive review.


  1. Acef K, Liégeois JP, Ouabadi A, Latouche L (2003) The Anfeg post-collisional Pan-African high-K calc-alkaline batholith (Central Hoggar, Algeria), result of the LATEA microcontinent metacratonization. J Afr Earth Sci 37:295–311CrossRefGoogle Scholar
  2. Adissin Glodji L, Bascou J, Yessoufou S, Ménot RP, Villaros A (2014) Relationships between deformation and magmatism in the Pan-African Kandi Shear Zone: microstructural and AMS studies of Ediacaran granitoid intrusions in central Bénin (West Africa). J Afr Earth Sci 97:143–160. Scholar
  3. Archanjo CJ, Trindade, RIF, Bouchez JL, Ernesto M (2002) Granite fabrics and regional-scale strain partitioning in the Seridó belt (Borborema Province, NE Brazil). Tectonics 21.
  4. Azzouni-Sekkal A, Boissonnas J (1987) Geochemistry of the Tioueine Pan-African granite complex (Hoggar, Algeria). Geol J 22:213–224CrossRefGoogle Scholar
  5. Azzouni-Sekkal A, Boissonnas J (1993) Une province magmatique de transition du calco-alcalin à l’alcalin: les granitoïdes panafricains à structure annulaire de la chaîne pharusienne du Hoggar (Algérie). Bull Soc Géol Fr 164:597–608Google Scholar
  6. Azzouni-Sekkal A, Liégeois J-P, Bechiri-Benmerzoug F, Belaidi-Zinet S, Bonin B (2003) The “Taourirt” magmatic province, a marker of the closing stage of the Pan-African orogeny in the Tuareg shield: review of available data and Sr–Nd isotope evidence. J Afr Earth Sci 37:331–350CrossRefGoogle Scholar
  7. Black R, Latouche L, Liégeois JP, Bertrand JM (1994) Pan African displaced terranes in the Tuareg shield (central Sahara). Geology 22:641–644CrossRefGoogle Scholar
  8. Boissonnas J (1974) Les granites à structures concentriques et quelques autres granites tardifs de la chaîne pan-africaine en Ahaggar (Sahara central, Algérie). Thesis, Centre de Recherches sur les Zones Arides, Série Géologie, vol 16, 662 pGoogle Scholar
  9. Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93CrossRefGoogle Scholar
  10. Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic fabric of deformed rocks. In: Martin-Hernandez F, Lünenburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and application. Geological Society London, Special Publication, vol 238, pp 299–360Google Scholar
  11. Bouchez JL (2000) Anisotropie de susceptibilité et fabrique des granites. C R Acad Sci Paris Earth Planet Sci 330:1–14CrossRefGoogle Scholar
  12. Boulfelfel NE, Ouabadi A (2000) Le pluton granitique “Taourirt” pan-africain de Teg Orak (Hoggar Occidental): caractéristiques géochimiques. Bull Serv Géol Algérie 11:147–163Google Scholar
  13. Cheilletz A, Bertrand JM, Charoy B, Moulahoum O, Bouabsa L, Farrar E, Zimmermannn JL, Dautel D, Archibald DA, Boullier AM (1992) Géochimie et géochronologie Rb–Sr, K–Ar et 40Ar/39Ar des complexes granitiques pan-africains de la région de Tamanrasset (Algérie): relation avec les minéralisations Sn-W associées et l’évolution tectonique du Hoggar central. Bull Soc Géol Fr 163:733–750Google Scholar
  14. Dawaï D, Tchameni R, Bascou J, Awe Wangmene S, Fosso Tchunte PM, Bouchez B (2017) Microstructures and magnetic fabrics of the Ngaoundéré granite pluton (Cameroon): implications to the late-Pan-African evolution of Central Cameroon Shear Zone. J Afr Earth Sci 129:887–897Google Scholar
  15. Djouadi MT, Bouchez JL (1992) Structure étrange du granite du Tesnou (Hoggar, Algérie). C R Acad Sci Paris 315 II:1231–1238Google Scholar
  16. Djouadi MT, Gleizes G, Ferré E, Bouchez JL, Caby R, Lesquer A (1997) Oblique magmatic structures of two epizonal granite plutons, Hoggar, Algeria: late orogenic emplacement in a transcurrent orogen. Tectonophysics 279:351–374CrossRefGoogle Scholar
  17. Geological map “Tin Felki” (2002) Carte géologique de l’Algérie au 1/200 000 NF-31-XXIII. Service Géologique de l’Algérie, Office National de la Recherche Géologique et MinièreGoogle Scholar
  18. Georgiev N, Henry B, Jordanova N, Jordanova D, Naydenov K (2014) Emplacement and fabric-forming conditions of plutons from structural and magnetic fabric analysis: case study of the Plana massif (central Bulgaria). Tectonophysics 629:138–154.
  19. Guemache MA, Henry B, Djellit H, Derder MEM (2009) Preliminary study of anisotropy of magnetic susceptibility of the Aïn Kahla Late Pan-African granites (north-west Hoggar, Algeria) and structural implications. Bull Serv Géol Algérie 20:189–203Google Scholar
  20. Henry B (1974) Sur l’anisotropie de susceptibilité magnétique du granite récent de Novate (Italie du Nord). C R Acad Sci Paris 278C:11711174Google Scholar
  21. Henry B (1975) Microtectonique et anisotropie de susceptibilité magnétique du massif tonalitique des Riesenferner Vedrette di Ries (frontière italo-autrichienne). Tectonophysics 27(155):165Google Scholar
  22. Henry B (1980) Contribution à l’étude des propriétés magnétiques de roches magmatiques des Alpes: conséquences structurales, régionales et générales. Travaux du Laboratoire de Tectonophysique, Paris, CRE 80/07, 528 pGoogle Scholar
  23. Henry B (1997) The magnetic zone axis: a new element of magnetic fabric for the interpretation of the magnetic lineation. Tectonophysics 271:325–329CrossRefGoogle Scholar
  24. Henry B, Le Goff M (1995) Application de l’extension bivariate de la statistique de Fisher aux données d’anisotropie de susceptibilité magnétique: intégration des incertitudes de mesure sur l’orientation des directions principales. C R Acad Sci Paris 320 II:1037–1042Google Scholar
  25. Henry B, Djellit H, Bayou B, Derder MEM, Ouabadi A, Merahi MK, Baziz K, Khaldi A, Hemmi A (2004) Emplacement and fabric-forming conditions of the Alous-En-Tides granite, eastern border of the Tin Serririne/Tin Mersoï basin (Algeria): magnetic and visible fabrics analysis. J Struct Geol 26:1647–1657CrossRefGoogle Scholar
  26. Henry B, Derder MEM, Bayou B, Ouabadi A, Belhai D, Hemmi A (2006) Magnetic fabric of Late Panafrican plutons in the Tamanrasset area (Hoggar shield, Algeria) and structural implications. Afr Geosci Rev 13:41–52Google Scholar
  27. Henry B, Bayou B, Derder MEM, Djellit H, Ouabadi A, Khaldi A, Hemmi A (2007) Late Panafrican evolution of the main Hoggar fault zones: implications of magnetic fabric study in the In Telloukh pluton (Tin Serririne basin, Algeria). J Afr Earth Sci 49:211–221. Scholar
  28. Henry B, Derder MEM, Bayou B, Guemache MA, Nouar O, Ouabadi A, Djellit H, Amenna M, Hemmi A (2008) Inhomogeneous shearing related with rocks composition: evidence from a major late-Panafrican shear zone in the Tuareg shield (Algeria). Swiss J Geosci 101:453–464. Scholar
  29. Henry B, Liégeois JP, Nouar O, Derder MEM, Bayou B, Bruguier O, Ouabadi A, Belhai D, Amenna M, Hemmi A, Ayache M (2009) Repeated granitoid intrusions during the Neoproterozoic along the western boundary of the Saharan metacraton, Eastern Hoggar, Tuareg shield, Algeria: an AMS and U–Pb zircon age study. Tectonophysics 474:417–434. Scholar
  30. Henry B, Naydenov K, Dimov D, Jordanova D, Jordanova N (2012) Relations between the emplacement and fabric-forming conditions of the Kapitan-Dimitrievo pluton and the Maritsa shear zone (Central Bulgaria): magnetic and visible fabrics analysis. Int J Earth Sci 101:747–749. Scholar
  31. Hext G (1963) The estimation of second-order tensors, with related tests and designs. Biometrika 50:353CrossRefGoogle Scholar
  32. Hrouda F, Lanza R (1989) Magnetic fabric in the Biella and Traversella stocks (Periadriatic Line): implications for the mode of emplacement. Phys Earth Planet Inter 56:337–348CrossRefGoogle Scholar
  33. Jelinek V (1978) Statistical processing of magnetic susceptibility measured in groups of specimens. Stud Geophys Geod 22:50–62CrossRefGoogle Scholar
  34. Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–67CrossRefGoogle Scholar
  35. King RF (1966) The magnetic fabric of some Irish granites. Geol J 5:43–66CrossRefGoogle Scholar
  36. Krasa D, Herrero-Bervera E (2005) Alteration induced changes of magnetic fabric as exemplified by dykes of the Koolau volcanic range. Earth Planet Sci Lett 240:445–453CrossRefGoogle Scholar
  37. Kratinová Z, Schulmann K, Edel JB, Ježek J, Schaltegger U (2007) Model of successive granite sheet emplacement in transtensional setting: integrated microstructural and anisotropy of magnetic susceptibility study. Tectonics 26:TC6003.
  38. Lelubre M (1952) Recherches sur la géologie de l’Ahaggar central et occidental. Bull Serv Carte Géol Algérie 2:22Google Scholar
  39. Liégeois JP, Black R, Navez J, Latouche L (1994) Early and late Pan-African orogenies in the Air assembly of terranes (Tuareg shield, Niger). Precambr Res 67:59–66CrossRefGoogle Scholar
  40. Liégeois JP, Navez J, Hertogen J, Black R (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. Lithos 45:1–28CrossRefGoogle Scholar
  41. Liégeois JP, Latouche L, Boughrara M, Navez J, Guiraud M (2003) The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. J Afr Earth Sci 37:161–190CrossRefGoogle Scholar
  42. Marre J (1982) Analyse structurale des granitoïdes. BRGM Orléans, 80 pGoogle Scholar
  43. Neves SP, Araújo AMB, Correia PB, Mariano G (2003) Magnetic fabrics in the cabanas granite (NE Brazil): interplay between emplacement and regional fabrics in a dextral transpressive regime. J Struct Geol 25:441–453CrossRefGoogle Scholar
  44. Njanko T, Nédélec A, Kwékam M, Siqueira R, Estaban L (2009) The emplacement and deformation of the Fomopea pluton: implications for the Pan-African history of Western Cameroon. J Struct Geol.
  45. Nouar O, Henry B, Liégeois JP, Derder MEM, Bayou B, Bruguier O, Ouabadi A, Amenna M, Hemmi A, Ayache M (2011) Eburnean and Pan-African granitoids and the Raghane mega-shear zone evolution: image analysis, U–Pb zircon age and AMS study in the Arokam Ténéré (Tuareg shield, Algeria). J Afr Earth Sci 60:133–152. Scholar
  46. Paquette JL, Caby R, Djouadi MT, Bouchez JL (1998) U–Pb dating of the end of Pan-African orogeny in the Tuareg shield: the post-collisional syn-shear Tioueine pluton (Western Hoggar, Algeria). Lithos 45:245–253CrossRefGoogle Scholar
  47. Paterson SR, Fowler TK Jr, Schmidt K, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82CrossRefGoogle Scholar
  48. Pignotta GS, Benn K (1999) Magnetic fabric of the Barrington Passage pluton, Meguma Terrane, Nova Scotia: a two-stage fabric history of syntectonic emplacement. Tectonophysics 307:75–92CrossRefGoogle Scholar
  49. Pitcher WS, Berger AR (1972) The geology of Donegal: a study of granite emplacement and unroofing. Wiley Interscience, New YorkGoogle Scholar
  50. Schofield DI, D’Lemos RS (1998) Relationships between syn-tectonic granite fabrics and regional PTtd paths: an example from the Gander-Avalon boundary of NE Newfoundland. J Struct Geol 20:459–471CrossRefGoogle Scholar
  51. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Kluwer Academic Publishers, 232 pGoogle Scholar
  52. Tomezzoli RN, McDonald WD, Tickyj H (2003) Composite magnetic fabrics and S–C structure in granitic gneiss of Cerro de los Viejos, La Pampa province, Argentina. J Struct Geol 25:159–169CrossRefGoogle Scholar
  53. Zeghouane H, Azzouni-Sekkal A, Liégeois JP (2008) Pétrologie et géochronologie des granitoïdes du massif d’Arirer, (Aouzegueur, Hoggar oriental, Algérie). Abstract. In: 22th Colloquium of African Geology, Tunis, Tunisia, p 259Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. Henry
    • 1
    Email author
  • M. E. M. Derder
    • 2
  • S. Maouche
    • 2
  • O. Nouar
    • 2
  • M. Amenna
    • 2
  • B. Bayou
    • 2
  • A. Ouabadi
    • 3
  1. 1.Paléomagnétisme, Institut de Physique du Globe de ParisSorbonne Paris Cité, Univ. Paris Diderot and UMR 7154 CNRSSaint-Maur CedexFrance
  2. 2.CRAAGBouzaréah, AlgerAlgeria
  3. 3.Laboratoire “Géodynamique, Géologie de l’Ingénieur et Planétologie”FSTGAT USTHBAlgerAlgeria

Personalised recommendations