Skip to main content

Tumors of the Salivary Gland

  • Chapter
  • First Online:
Oncological Surgical Pathology

Abstract

Recent advances in the diagnosis, differential diagnostics, and salient features of clinical relevance are concisely presented in this chapter. The role of fine needle aspiration and the limitations of this procedure in presurgical management of patients with these tumors are emphasized in communicating findings to clinicians. Similarly, the utilization of lineage-associated markers in the diagnosis and differential diagnosis of salivary and non-salivary tumors is tailored to emphasize context association. In this chapter, verified and consistent molecular and genetic findings are presented for familiarity and for their potential clinical and therapeutic implications. Emphasis on the future integration of these findings in current diagnosis and management remains to be validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellis GL. What’s new in the AFIP fascicle on salivary gland tumors: a few highlights from the 4th series atlas. Head Neck Pathol. 2009;3(3):225–30.

    PubMed  PubMed Central  Google Scholar 

  2. El-Naggar AK, Chan JKC, Takata T, Grandis JR, Slootweg PJ. The fourth edition of the head and neck World Health Organization blue book: editors’ perspectives. Hum Pathol. 2017;66:10–2.

    PubMed  Google Scholar 

  3. Bradley PJ, Eisele DW. Salivary gland neoplasms in children and adolescents. Adv Otorhinolaryngol. 2016;78:175–81.

    PubMed  Google Scholar 

  4. Kupferman ME, de la Garza GO, Santillan AA, et al. Outcomes of pediatric patients with malignancies of the major salivary glands. Ann Surg Oncol. 2010;17(12):3301–7.

    PubMed  Google Scholar 

  5. Mehta D, Willging JP. Pediatric salivary gland lesions. Semin Pediatr Surg. 2006;15(2):76–84.

    PubMed  Google Scholar 

  6. Yoshida EJ, Garcia J, Eisele DW, Chen AM. Salivary gland malignancies in children. Int J Pediatr Otorhinolaryngol. 2014;78(2):174–8.

    PubMed  Google Scholar 

  7. Madani SZ, Jalayernaderi N, Merati M, Haghshenas H, Ashouri M. Accuracy of fine needle aspiration (FNA) in diagnosis of major salivary gland tumors. Res J Med Sci. 2011;5(2).

    Google Scholar 

  8. Mairembam P, Jay A, Beale T, et al. Salivary gland FNA cytology: role as a triage tool and an approach to pitfalls in cytomorphology. Cytopathology. 2016;27(2):91–6.

    PubMed  CAS  Google Scholar 

  9. Rohilla M, Singh P, Rajwanshi A, et al. Three-year cytohistological correlation of salivary gland FNA cytology at a tertiary center with the application of the Milan system for risk stratification. Cancer. 2017;125(10):767–75.

    CAS  Google Scholar 

  10. Triantafyllou A, Thompson LD, Devaney KO, et al. Functional histology of salivary gland pleomorphic adenoma: an appraisal. Head Neck Pathol. 2015;9(3):387–404.

    PubMed  Google Scholar 

  11. Bell D, Myers JN, Rao PH, El-Naggar AK. t(3;8) as the sole chromosomal abnormality in a myoepithelial carcinoma ex pleomorphic adenoma: a putative progression event. Head Neck. 2013;35(6):E181–3.

    PubMed  Google Scholar 

  12. Roijer E, Kas K, Van de Ven W, Stenman G. Mapping of the 8q12 translocation breakpoint to a 40-kb region in a pleomorphic adenoma with an ins(8;3)(q12;p21.3p14.1). Cytogenet Cell Genet. 1997;76(1–2):23–6.

    PubMed  CAS  Google Scholar 

  13. Stenman G, Sahlin P, Mark J, Chaganti RS, Kindblom LG, Aman P. The 12q13-q15 translocation breakpoints in pleomorphic adenoma and clear-cell sarcoma of tendons and aponeuroses are different from that in myxoid liposarcoma. Genes Chromosomes Cancer. Jul 1993;7(3):178–80.

    PubMed  CAS  Google Scholar 

  14. Katabi N, Ghossein R, Ho A, et al. Consistent PLAG1 and HMGA2 abnormalities distinguish carcinoma ex-pleomorphic adenoma from its de novo counterparts. Hum Pathol. 2015;46(1):26–33.

    PubMed  CAS  Google Scholar 

  15. Matsuyama A, Hisaoka M, Nagao Y, Hashimoto H. Aberrant PLAG1 expression in pleomorphic adenomas of the salivary gland: a molecular genetic and immunohistochemical study. Virchows Arch. 2011;458(5):583–92.

    PubMed  CAS  Google Scholar 

  16. Mito JK, Jo VY, Chiosea SI, Dal Cin P, Krane JF. HMGA2 is a specific immunohistochemical marker for pleomorphic adenoma and carcinoma ex-pleomorphic adenoma. Histopathology. 2017;71(4):511–21.

    PubMed  Google Scholar 

  17. Bell D, Luna MA, Weber RS, Kaye FJ, El-Naggar AK. CRTC1/MAML2 fusion transcript in Warthin’s tumor and mucoepidermoid carcinoma: evidence for a common genetic association. Genes Chromosomes Cancer. 2008;47(4):309–14.

    PubMed  CAS  Google Scholar 

  18. Tirado Y, Williams MD, Hanna EY, Kaye FJ, Batsakis JG, El-Naggar AK. CRTC1/MAML2 fusion transcript in high grade mucoepidermoid carcinomas of salivary and thyroid glands and Warthin's tumors: implications for histogenesis and biologic behavior. Genes Chromosomes Cancer. 2007;46(7):708–15.

    PubMed  CAS  Google Scholar 

  19. Martins C, Fonseca I, Roque L, Soares J. Cytogenetic characterisation of Warthin's tumour. Oral Oncol. 1997;33(5):344–7.

    PubMed  CAS  Google Scholar 

  20. Nordkvist A, Mark J, Dahlenfors R, Bende M, Stenman G. Cytogenetic observations in 13 cystadenolymphomas (Warthin’s tumors). Cancer Genet Cytogenet. 1994;76(2):129–35.

    PubMed  CAS  Google Scholar 

  21. Batsakis JG, Luna MA, El-Naggar AK. Basaloid monomorphic adenomas. Ann Otol Rhinol Laryngol. 1991;100(8):687–90.

    PubMed  CAS  Google Scholar 

  22. Choi HR, Batsakis JG, Callender DL, Prieto VG, Luna MA, El-Naggar AK. Molecular analysis of chromosome 16q regions in dermal analogue tumors of salivary glands: a genetic link to dermal cylindroma? Am J Surg Pathol. 2002;26(6):778–83.

    PubMed  Google Scholar 

  23. Jo VY, Sholl LM, Krane JF. Distinctive patterns of CTNNB1 (beta-catenin) alterations in salivary gland basal cell adenoma and basal cell adenocarcinoma. Am J Surg Pathol. 2016;40(8):1143–50.

    PubMed  Google Scholar 

  24. Kazakov DV, Zelger B, Rutten A, et al. Morphologic diversity of malignant neoplasms arising in preexisting spiradenoma, cylindroma, and spiradenocylindroma based on the study of 24 cases, sporadic or occurring in the setting of Brooke-Spiegler syndrome. Am J Surg Pathol. 2009;33(5):705–19.

    PubMed  Google Scholar 

  25. Thompson LD, Bauer JL, Chiosea S, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9(2):181–95.

    PubMed  Google Scholar 

  26. Nagel H, Laskawi R, Eiffert H, Schlott T. Analysis of the tumour suppressor genes, FHIT and WT-1, and the tumour rejection genes, BAGE, GAGE-1/2, HAGE, MAGE-1, and MAGE-3, in benign and malignant neoplasms of the salivary glands. Mol Pathol. 2003;56(4):226–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Bell D, El-Naggar AK. Molecular heterogeneity in mucoepidermoid carcinoma: conceptual and practical implications. Head Neck Pathol. 2013;7(1):23–7.

    PubMed  PubMed Central  Google Scholar 

  28. Tonon G, Modi S, Wu L, et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet. 2003;33(2):208–13.

    PubMed  CAS  Google Scholar 

  29. Anzick SL, Chen WD, Park Y, et al. Unfavorable prognosis of CRTC1-MAML2 positive mucoepidermoid tumors with CDKN2A deletions. Genes Chromosomes Cancer. 2010;49(1):59–69.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Griffith CC, Thompson LD, Assaad A, et al. Salivary duct carcinoma and the concept of early carcinoma ex pleomorphic adenoma. Histopathology. 2014;65(6):854–60.

    PubMed  Google Scholar 

  31. Udager AM, Chiosea SI. Salivary duct carcinoma: an update on morphologic mimics and diagnostic use of androgen receptor immunohistochemistry. Head Neck Pathol. 2017;11(3):288–94.

    PubMed  PubMed Central  Google Scholar 

  32. Williams MD, Roberts D, Blumenschein GR Jr, et al. Differential expression of hormonal and growth factor receptors in salivary duct carcinomas: biologic significance and potential role in therapeutic stratification of patients. Am J Surg Pathol. 2007;31(11):1645–52.

    PubMed  Google Scholar 

  33. Mitani Y, Rao PH, Maity SN, et al. Alterations associated with androgen receptor gene activation in salivary duct carcinoma of both sexes: potential therapeutic ramifications. Clin Cancer Res. 2014;20(24):6570–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Williams L, Thompson LD, Seethala RR, et al. Salivary duct carcinoma: the predominance of apocrine morphology, prevalence of histologic variants, and androgen receptor expression. Am J Surg Pathol. 2015;39(5):705–13.

    PubMed  Google Scholar 

  35. Williams MD, Roberts DB, Kies MS, Mao L, Weber RS, El-Naggar AK. Genetic and expression analysis of HER-2 and EGFR genes in salivary duct carcinoma: empirical and therapeutic significance. Clin Cancer Res. 2010;16(8):2266–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Fehr A, Kovacs A, Loning T, Frierson H Jr, van den Oord J, Stenman G. The MYB-NFIB gene fusion-a novel genetic link between adenoid cystic carcinoma and dermal cylindroma. J Pathol. 2011;224(3):322–7.

    PubMed  CAS  Google Scholar 

  37. Mitani Y, Rao PH, Futreal PA, et al. Novel chromosomal rearrangements and break points at the t(6;9) in salivary adenoid cystic carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome. Clin Cancer Res. 2011;17(22):7003–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Nordkvist A, Mark J, Gustafsson H, Bang G, Stenman G. Non-random chromosome rearrangements in adenoid cystic carcinoma of the salivary glands. Genes Chromosomes Cancer. 1994;10(2):115–21.

    PubMed  CAS  Google Scholar 

  39. Rutherford S, Yu Y, Rumpel CA, Frierson HF Jr, Moskaluk CA. Chromosome 6 deletion and candidate tumor suppressor genes in adenoid cystic carcinoma. Cancer Lett. 2006;236(2):309–17.

    PubMed  CAS  Google Scholar 

  40. Thompson LD, Aslam MN, Stall JN, Udager AM, Chiosea S, McHugh JB. Clinicopathologic and immunophenotypic characterization of 25 cases of acinic cell carcinoma with high-grade transformation. Head Neck Pathol. 2016;10(2):152–60.

    PubMed  Google Scholar 

  41. El-Naggar AK, Abdul-Karim FW, Hurr K, Callender D, Luna MA, Batsakis JG. Genetic alterations in acinic cell carcinoma of the parotid gland determined by microsatellite analysis. Cancer Genet Cytogenet. 1998;102(1):19–24.

    PubMed  CAS  Google Scholar 

  42. Skalova A, Sima R, Vanecek T, et al. Acinic cell carcinoma with high-grade transformation: a report of 9 cases with immunohistochemical study and analysis of TP53 and HER-2/neu genes. Am J Surg Pathol. 2009;33(8):1137–45.

    PubMed  Google Scholar 

  43. Skalova A. Mammary analogue secretory carcinoma of salivary gland origin: an update and expanded morphologic and immunohistochemical spectrum of recently described entity. Head Neck Pathol. 2013;7(Suppl 1):S30–6.

    PubMed  Google Scholar 

  44. Skalova A, Vanecek T, Majewska H, et al. Mammary analogue secretory carcinoma of salivary glands with high-grade transformation: report of 3 cases with the ETV6-NTRK3 gene fusion and analysis of TP53, beta-catenin, EGFR, and CCND1 genes. Am J Surg Pathol. 2014;38(1):23–33.

    PubMed  Google Scholar 

  45. Skalova A, Vanecek T, Sima R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol. 2010;34(5):599–608.

    PubMed  Google Scholar 

  46. Urano M, Nagao T, Miyabe S, Ishibashi K, Higuchi K, Kuroda M. Characterization of mammary analogue secretory carcinoma of the salivary gland: discrimination from its mimics by the presence of the ETV6-NTRK3 translocation and novel surrogate markers. Hum Pathol. 2015;46(1):94–103.

    PubMed  CAS  Google Scholar 

  47. Evans HL, Luna MA. Polymorphous low-grade adenocarcinoma: a study of 40 cases with long-term follow up and an evaluation of the importance of papillary areas. Am J Surg Pathol. 2000;24(10):1319–28.

    PubMed  CAS  Google Scholar 

  48. Xu B, Aneja A, Ghossein R, Katabi N. Predictors of outcome in the phenotypic Spectrum of polymorphous low-grade adenocarcinoma (PLGA) and cribriform adenocarcinoma of salivary gland (CASG): a retrospective study of 69 patients. Am J Surg Pathol. 2016;40(11):1526–37.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel K. El-Naggar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bell, D., Williams, M.D., El-Naggar, A.K. (2020). Tumors of the Salivary Gland. In: Moran, C.A., Kalhor, N., Weissferdt, A. (eds) Oncological Surgical Pathology . Springer, Cham. https://doi.org/10.1007/978-3-319-96681-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96681-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96680-9

  • Online ISBN: 978-3-319-96681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics