Skip to main content

Diagnostic Molecular Pathology

  • Chapter
  • First Online:
Oncological Surgical Pathology

Abstract

The integration of molecular diagnostics into routine clinical practice has made a significant impact in the diagnosis and management of solid tumors. While morphologic evaluation by light microscopy remains the cornerstone of anatomic pathology diagnosis, an expanding list of ancillary techniques, including immunohistochemistry, cytogenetics, and molecular testing, has been incorporated into the clinical diagnosis, management, and selection of targeted therapy. The discovery of a variety of molecular markers through genomic profiling of solid tumors, together with correlating these biomarkers with histologic features and clinical response to therapy and patient survival, has allowed the use of these molecular biomarkers for diagnostic, prognostic, predictive, and therapeutic purposes. The increased understanding of the molecular mechanisms underlying solid organ malignancies together with the advances in technology have contributed to the rapid growth in clinical molecular testing and their implementation in diagnosis, therapy selection, and cancer screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunt JL. Molecular testing in solid tumors: an overview. Arch Pathol Lab Med. 2008;132(2):164–7.

    Article  PubMed  CAS  Google Scholar 

  2. Igbokwe A, Lopez-Terrada DH. Molecular testing of solid tumors. Arch Pathol Lab Med. 2011;135(1):67–82.

    Article  PubMed  CAS  Google Scholar 

  3. Narayanan S. Applications of restriction fragment length polymorphism. Ann Clin Lab Sci. 1991;21(4):291–6.

    PubMed  CAS  Google Scholar 

  4. Watkins PC. Restriction fragment length polymorphism (RFLP): applications in human chromosome mapping and genetic disease research. BioTechniques. 1988;6(4):310–9, 322.

    PubMed  CAS  Google Scholar 

  5. Saiki RK, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–4.

    Article  PubMed  CAS  Google Scholar 

  6. Saiki RK, et al. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986;324(6093):163–6.

    Article  PubMed  CAS  Google Scholar 

  7. Conner BJ, et al. Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci U S A. 1983;80(1):278–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Newton CR, et al. Amplification refractory mutation system for prenatal diagnosis and carrier assessment in cystic fibrosis. Lancet. 1989;2(8678–8679):1481–3.

    Article  PubMed  CAS  Google Scholar 

  9. Newton CR, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17(7):2503–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bui MH, et al. PCR-oligonucleotide ligation assay for detection of point mutations associated with quinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2003;47(4):1456–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jarvius J, Nilsson M, Landegren U. Oligonucleotide ligation assay. Methods Mol Biol. 2003;212:215–28.

    PubMed  CAS  Google Scholar 

  12. Kirsten H, et al. Robustness of single-base extension against mismatches at the site of primer attachment in a clinical assay. J Mol Med (Berl). 2007;85(4):361–9.

    Article  CAS  Google Scholar 

  13. Nyren P, Karamohamed S, Ronaghi M. Detection of single-base changes using a bioluminometric primer extension assay. Anal Biochem. 1997;244(2):367–73.

    Article  PubMed  CAS  Google Scholar 

  14. Jurinke C, et al. The use of MassARRAY technology for high throughput genotyping. Adv Biochem Eng Biotechnol. 2002;77:57–74.

    PubMed  CAS  Google Scholar 

  15. Jurinke C, et al. Automated genotyping using the DNA MassArray technology. Methods Mol Biol. 2001;170:103–16.

    PubMed  CAS  Google Scholar 

  16. Budowle SA, et al. A novel SNaPshot assay to detect the mdx mutation. Muscle Nerve. 2008;37(6):731–5.

    Article  PubMed  CAS  Google Scholar 

  17. Wu CC, et al. Application of SNaPshot multiplex assays for simultaneous multigene mutation screening in patients with idiopathic sensorineural hearing impairment. Laryngoscope. 2009;119(12):2411–6.

    Article  PubMed  CAS  Google Scholar 

  18. Hyman ED. A new method of sequencing DNA. Anal Biochem. 1988;174(2):423–36.

    Article  PubMed  CAS  Google Scholar 

  19. Ahmadian A, et al. Single-nucleotide polymorphism analysis by pyrosequencing. Anal Biochem. 2000;280(1):103–10.

    Article  PubMed  CAS  Google Scholar 

  20. Ahmadian A, et al. Analysis of the p53 tumor suppressor gene by pyrosequencing. BioTechniques. 2000;28(1):140–4, 146-7.

    Article  PubMed  CAS  Google Scholar 

  21. Garcia CA, et al. Mutation detection by pyrosequencing: sequencing of exons 5-8 of the p53 tumor suppressor gene. Gene. 2000;253(2):249–57.

    Article  PubMed  CAS  Google Scholar 

  22. Nordstrom T, et al. Direct analysis of single-nucleotide polymorphism on double-stranded DNA by pyrosequencing. Biotechnol Appl Biochem. 2000;31(Pt 2):107–12.

    Article  PubMed  CAS  Google Scholar 

  23. Heid CA, et al. Real time quantitative PCR. Genome Res. 1996;6(10):986–94.

    Article  PubMed  CAS  Google Scholar 

  24. Higuchi R, et al. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 1993;11(9):1026–30.

    CAS  Google Scholar 

  25. Miller WH Jr, et al. Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor alpha clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 1992;89(7):2694–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mocharla H, Mocharla R, Hodes ME. Coupled reverse transcription-polymerase chain reaction (RT-PCR) as a sensitive and rapid method for isozyme genotyping. Gene. 1990;93(2):271–5.

    Article  PubMed  CAS  Google Scholar 

  27. Coffee B, Methylation-specific PCR. Curr Protoc Hum Genet. 2009;Chapter 10: p. Unit 10 6.

    Google Scholar 

  28. Derks S, et al. Methylation-specific PCR unraveled. Cell Oncol. 2004;26(5–6):291–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Ku JL, Jeon YK, Park JG. Methylation-specific PCR. Methods Mol Biol. 2011;791:23–32.

    Article  PubMed  CAS  Google Scholar 

  30. Licchesi JD, Herman JG. Methylation-specific PCR. Methods Mol Biol. 2009;507:305–23.

    Article  PubMed  CAS  Google Scholar 

  31. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  PubMed  CAS  Google Scholar 

  33. Liu L, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed  PubMed Central  Google Scholar 

  34. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–17.

    Article  PubMed  CAS  Google Scholar 

  35. Nguyen TD. Southern blot analysis of polymerase chain reaction products on acrylamide gels. BioTechniques. 1989;7(3):238–40.

    PubMed  CAS  Google Scholar 

  36. Rosenberg J, Amrani DL. A rapid method of southern blot analysis using polyacrylamide gel electrophoresis and vacuum blotting transfer techniques. BioTechniques. 1989;7(1):24, 26, 28.

    PubMed  Google Scholar 

  37. Fischer SG, Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A. 1983;80(6):1579–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fischer SG, Lerman LS. Separation of random fragments of DNA according to properties of their sequences. Proc Natl Acad Sci U S A. 1980;77(8):4420–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fischer SG, Lerman LS. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell. 1979;16(1):191–200.

    Article  PubMed  CAS  Google Scholar 

  40. Thatcher DR, Hodson B. Denaturation of proteins and nucleic acids by thermal-gradient electrophoresis. Biochem J. 1981;197(1):105–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Orita M, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989;86(8):2766–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. White MB, et al. Detecting single base substitutions as heteroduplex polymorphisms. Genomics. 1992;12(2):301–6.

    Article  PubMed  CAS  Google Scholar 

  43. Underhill PA, et al. Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res. 1997;7(10):996–1005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Erlandson A, et al. Multiplex ligation-dependent probe amplification (MLPA) detects large deletions in the MECP2 gene of Swedish Rett syndrome patients. Genet Test. 2003;7(4):329–32.

    Article  PubMed  CAS  Google Scholar 

  45. Schouten JP, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pinkel D, Albertson DG. Array comparative genomic hybridization and its applications in cancer. Nat Genet. 2005;37(Suppl):S11–7.

    Article  PubMed  CAS  Google Scholar 

  47. Oostlander AE, Meijer GA, Ylstra B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet. 2004;66(6):488–95.

    Article  PubMed  CAS  Google Scholar 

  48. Kozma R, Fear C, Adinolfi M. Fluorescence in situ hybridization and Y ring chromosome. Hum Genet. 1988;80(1):95–6.

    Article  PubMed  CAS  Google Scholar 

  49. Pinkel D, et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A. 1988;85(23):9138–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Trask B, Pinkel D. Fluorescence in situ hybridization with DNA probes. Methods Cell Biol. 1990;33:383–400.

    Article  PubMed  CAS  Google Scholar 

  51. Lu PY, et al. Dual color fluorescence in situ hybridization to investigate aneuploidy in sperm from 33 normal males and a man with a t(2;4;8)(q23;q27;p21). Fertil Steril. 1994;62(2):394–9.

    Article  PubMed  CAS  Google Scholar 

  52. Kallioniemi A, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818–21.

    Article  PubMed  CAS  Google Scholar 

  53. Speicher MR, et al. Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative genomic hybridization after universal DNA-amplification. Hum Mol Genet. 1993;2(11):1907–14.

    Article  PubMed  CAS  Google Scholar 

  54. Tanner M, et al. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol. 2000;157(5):1467–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59(2 Suppl):21–6.

    Article  PubMed  CAS  Google Scholar 

  56. Lynch TJ, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.

    Article  PubMed  CAS  Google Scholar 

  57. Paez JG, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.

    Article  PubMed  CAS  Google Scholar 

  58. Pao W, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101(36):13306–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sharma SV, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.

    Article  PubMed  CAS  Google Scholar 

  60. Yasuda H, et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013;5(216):216ra177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Taron M, et al. Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer Res. 2005;11(16):5878–85.

    Article  PubMed  CAS  Google Scholar 

  62. Lindeman NI, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15(4):415–53.

    Article  PubMed  CAS  Google Scholar 

  63. Pao W, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Yu HA, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bean J, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104(52):20932–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Dziadziuszko R, et al. Correlation between MET gene copy number by silver in situ hybridization and protein expression by immunohistochemistry in non-small cell lung cancer. J Thorac Oncol. 2012;7(2):340–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shigematsu H, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005;97(5):339–46.

    Article  PubMed  CAS  Google Scholar 

  68. Dogan S, et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res. 2012;18(22):6169–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Cardarella S, et al. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res. 2013;19(16):4532–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sanchez-Torres JM, et al. BRAF mutant non-small cell lung cancer and treatment with BRAF inhibitors. Transl Lung Cancer Res. 2013;2(3):244–50.

    PubMed  PubMed Central  Google Scholar 

  71. Warth A, et al. EGFR, KRAS, BRAF and ALK gene alterations in lung adenocarcinomas: patient outcome, interplay with morphology and immunophenotype. Eur Respir J. 2014;43(3):872–83.

    Article  PubMed  CAS  Google Scholar 

  72. Soda M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.

    Article  PubMed  CAS  Google Scholar 

  73. Kwak EL, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Martinez P, et al. Fluorescence in situ hybridization and immunohistochemistry as diagnostic methods for ALK positive non-small cell lung cancer patients. PLoS One. 2013;8(1):e52261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mino-Kenudson M, et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res. 2010;16(5):1561–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Sholl LM, et al. Combined use of ALK immunohistochemistry and FISH for optimal detection of ALK-rearranged lung adenocarcinomas. J Thorac Oncol. 2013;8(3):322–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yoshida A, et al. ROS1-rearranged lung cancer: a clinicopathologic and molecular study of 15 surgical cases. Am J Surg Pathol. 2013;37(4):554–62.

    Article  PubMed  Google Scholar 

  78. Bergethon K, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Yoshida A, et al. Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol. 2014;27(5):711–20.

    Article  PubMed  CAS  Google Scholar 

  80. Sholl LM, et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol. 2013;37(9):1441–9.

    Article  PubMed  Google Scholar 

  81. Hammond ME, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28(16):2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Slamon DJ, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  PubMed  CAS  Google Scholar 

  83. Joensuu H, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med. 2006;354(8):809–20.

    Article  PubMed  CAS  Google Scholar 

  84. Romond EH, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    Article  PubMed  CAS  Google Scholar 

  85. Dawood S, et al. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J Clin Oncol. 2010;28(1):92–8.

    Article  PubMed  CAS  Google Scholar 

  86. Wolff AC, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.

    Article  PubMed  Google Scholar 

  87. Henry NL, Hayes DF. Use of gene-expression profiling to recommend adjuvant chemotherapy for breast cancer. Oncology (Williston Park). 2007;21(11):1301–9. discussion 1311, 1314, 1319.

    Google Scholar 

  88. Morris SR, Carey LA. Gene expression profiling in breast cancer. Curr Opin Oncol. 2007;19(6):547–51.

    Article  PubMed  CAS  Google Scholar 

  89. Berns EM, et al. Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res. 2000;60(8):2155–62.

    PubMed  CAS  Google Scholar 

  90. Berns EM, et al. Mutations in residues of TP53 that directly contact DNA predict poor outcome in human primary breast cancer. Br J Cancer. 1998;77(7):1130–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Holst F, et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet. 2007;39(5):655–60.

    Article  PubMed  CAS  Google Scholar 

  92. Tomita S, et al. Estrogen receptor alpha gene ESR1 amplification may predict endocrine therapy responsiveness in breast cancer patients. Cancer Sci. 2009;100(6):1012–7.

    Article  PubMed  CAS  Google Scholar 

  93. Mukohara T. PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer (Dove Med Press). 2015;7:111–23.

    Google Scholar 

  94. Futreal PA, et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science. 1994;266(5182):120–2.

    Article  PubMed  CAS  Google Scholar 

  95. Marcus JN, et al. Hereditary breast cancer: pathobiology, prognosis, and BRCA1 and BRCA2 gene linkage. Cancer. 1996;77(4):697–709.

    Article  PubMed  CAS  Google Scholar 

  96. Miki Y, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71.

    Article  PubMed  CAS  Google Scholar 

  97. Force USPST. Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: recommendation statement. Ann Intern Med. 2005;143(5):355–61.

    Article  Google Scholar 

  98. Nelson HD, et al. Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2005;143(5):362–79.

    Article  PubMed  CAS  Google Scholar 

  99. Cho KR, Vogelstein B. Genetic alterations in the adenoma--carcinoma sequence. Cancer. 1992;70(6 Suppl):1727–31.

    Article  PubMed  CAS  Google Scholar 

  100. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  101. Laurent-Puig P, Blons H, Cugnenc PH. Sequence of molecular genetic events in colorectal tumorigenesis. Eur J Cancer Prev. 1999;8(Suppl 1):S39–47.

    PubMed  Google Scholar 

  102. Roth AD, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol. 2010;28(3):466–74.

    Article  PubMed  CAS  Google Scholar 

  103. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–2087 e3.

    Article  PubMed  CAS  Google Scholar 

  104. Gala M, Chung DC. Hereditary colon cancer syndromes. Semin Oncol. 2011;38(4):490–9.

    Article  PubMed  Google Scholar 

  105. Sepulveda AR, et al. Molecular biomarkers for the evaluation of colorectal Cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology. J Clin Oncol. 2017;35(13):1453–86.

    Article  PubMed  CAS  Google Scholar 

  106. Curtin JA, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  PubMed  CAS  Google Scholar 

  107. Curtin JA, et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340–6.

    Article  PubMed  CAS  Google Scholar 

  108. Van Raamsdonk CD, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599–602.

    Article  PubMed  CAS  Google Scholar 

  109. Jones DT, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Schindler G, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):397–405.

    Article  PubMed  CAS  Google Scholar 

  111. Yip S, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  112. Appin CL, Brat DJ. Molecular genetics of gliomas. Cancer J. 2014;20(1):66–72.

    Article  PubMed  CAS  Google Scholar 

  113. Cancer Genome Atlas Research, N, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98.

    Article  CAS  Google Scholar 

  114. Alahmadi H, Croul SE. Pathology and genetics of meningiomas. Semin Diagn Pathol. 2011;28(4):314–24.

    Article  PubMed  Google Scholar 

  115. Ellison DW, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121(3):381–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Preusser M, Bienkowski M, Birner P. BRAF inhibitors in BRAF-V600 mutated primary neuroepithelial brain tumors. Expert Opin Investig Drugs. 2016;25(1):7–14.

    Article  PubMed  CAS  Google Scholar 

  117. Rekhi B, et al. Clinicopathological and molecular spectrum of Ewing sarcomas/PNETs, including validation of EWSR1 rearrangement by conventional and array FISH technique in certain cases. Pathol Oncol Res. 2014;20(3):503–16.

    Article  PubMed  CAS  Google Scholar 

  118. Barr FG, Womer RB. Molecular diagnosis of ewing family tumors: too many fusions... ? J Mol Diagn. 2007;9(4):437–40.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sankar S, Lessnick SL. Promiscuous partnerships in Ewing's sarcoma. Cancer Genet. 2011;204(7):351–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Argani P, Ladanyi M. Recent advances in pediatric renal neoplasia. Adv Anat Pathol. 2003;10(5):243–60.

    Article  PubMed  Google Scholar 

  121. Stenman G. Fusion oncogenes in salivary gland tumors: molecular and clinical consequences. Head Neck Pathol. 2013;7(Suppl 1):S12–9.

    Article  PubMed  Google Scholar 

  122. Teixeira MR. Recurrent fusion oncogenes in carcinomas. Crit Rev Oncog. 2006;12(3–4):257–71.

    Article  PubMed  Google Scholar 

  123. Cancer Genome Atlas Research, N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  CAS  Google Scholar 

  124. Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Nikiforov YE, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on Cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid. 2015;25(11):1217–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Armstrong MJ, et al. PAX8/PPARgamma rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid. 2014;24(9):1369–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Dobashi Y, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol. 1994;3(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  128. Garcia-Rostan G, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65(22):10199–207.

    Article  PubMed  CAS  Google Scholar 

  129. Jhiang SM, et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996;137(1):375–8.

    Article  PubMed  CAS  Google Scholar 

  130. Bongarzone I, et al. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene. 1989;4(12):1457–62.

    PubMed  CAS  Google Scholar 

  131. Lin CC, et al. Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer. Expert Rev Mol Diagn. 2015;15(11):1427–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Alix-Panabieres C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14(9):623–31.

    Article  PubMed  CAS  Google Scholar 

  133. Andree KC, van Dalum G, Terstappen LW. Challenges in circulating tumor cell detection by the CellSearch system. Mol Oncol. 2016;10(3):395–407.

    Article  PubMed  CAS  Google Scholar 

  134. Hofman V, et al. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: comparison of the efficacy of the CellSearch Assay and the isolation by size of epithelial tumor cell method. Int J Cancer. 2011;129(7):1651–60.

    Article  PubMed  CAS  Google Scholar 

  135. Brown P. The Cobas(R) EGFR mutation test v2 assay. Future Oncol. 2016;12(4):451–2.

    Article  PubMed  CAS  Google Scholar 

  136. Perez-Ramirez C, et al. Liquid biopsy in early stage lung cancer. Transl Lung Cancer Res. 2016;5(5):517–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio I. Wistuba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy-Chowdhuri, S., Luthra, R., Wistuba, I.I. (2020). Diagnostic Molecular Pathology. In: Moran, C.A., Kalhor, N., Weissferdt, A. (eds) Oncological Surgical Pathology . Springer, Cham. https://doi.org/10.1007/978-3-319-96681-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96681-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96680-9

  • Online ISBN: 978-3-319-96681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics