Skip to main content

Tumors of the Gastrointestinal System Including the Pancreas

  • Chapter
  • First Online:
Oncological Surgical Pathology

Abstract

The chapter on the gastrointestinal tract focuses on neoplasms arising in the esophagus, stomach, small intestine, appendix, colon, and anus. An overview of concepts common to the gastrointestinal tract, such as neoplasia arising in inflammatory conditions and hereditary conditions, and an overview of neuroendocrine neoplasms, is provided in the introductory section. A brief review of normal histology of the organs is presented. Most of the tumors presented in this chapter represent epithelial neoplasms, and thus, mesenchymal tumors and lymphomas are reviewed in their respective chapters. The features of the neoplasms are presented, including descriptions of pertinent precursor lesions, pathogenesis, macroscopic and microscopic features as well as tumor subtypes and histologic prognostic features, and immunohistochemical profiles. Common diagnostic dilemmas, predictive and prognostic factors, and molecular abnormalities are discussed. Changes to the current American Joint Commission on Cancer staging guidelines are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    Article  PubMed  CAS  Google Scholar 

  2. O’Sullivan KE, Phelan JJ, O’Hanlon C, Lysaght J, O’Sullivan JN, Reynolds JV. The role of inflammation in cancer of the esophagus. Expert Rev Gastroenterol Hepatol. 2014;8(7):749–60.

    Article  PubMed  CAS  Google Scholar 

  3. Park YH, Kim N. Review of atrophic gastritis and intestinal metaplasia as a premalignant lesion of gastric cancer. J Cancer Prev. 2015;20(1):25–40.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Correa P, Piazuelo MB. Helicobacter pylori infection and gastric adenocarcinoma. US Gastroenterol Hepatol Rev. 2011;7(1):59–64.

    PubMed  PubMed Central  Google Scholar 

  5. Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011;140(6):1807–16.

    Article  PubMed  CAS  Google Scholar 

  6. Axelrad JE, Lichtiger S, Sethi A. Treatment of Crohn’s disease anastomotic stricture with a Lumen-apposing metal stent. Clin Gastroenterol Hepatol. 2018;16(3):A25–6.

    Article  PubMed  Google Scholar 

  7. Ng DW, Ching Tan GH, Teo MC. Malignancy arising in a 41-year-old colonic interposition graft. Asian J Surg. 2016;39(1):45–7.

    Article  PubMed  Google Scholar 

  8. Iwamoto M, Kawada K, Hida K, Hasegawa S, Sakai Y. Adenocarcinoma arising at a colostomy site with inguinal lymph node metastasis: report of a case. Jpn J Clin Oncol. 2015;45(2):217–20.

    Article  PubMed  Google Scholar 

  9. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–87. e3.

    Article  PubMed  CAS  Google Scholar 

  10. Tutlewska K, Lubinski J, Kurzawski G. Germline deletions in the EPCAM gene as a cause of lynch syndrome – literature review. Hered Cancer Clin Pract. 2013;11(1):9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, et al. Guidelines on genetic evaluation and management of lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Am J Gastroenterol. 2014;109(8):1159–79.

    Article  PubMed  Google Scholar 

  12. Vasen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on hereditary non-polyposis colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34(5):424–5.

    Article  PubMed  CAS  Google Scholar 

  13. Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–6.

    Article  PubMed  CAS  Google Scholar 

  14. Parry S, Win AK, Parry B, Macrae FA, Gurrin LC, Church JM, et al. Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut. 2011;60(7):950–7.

    Article  PubMed  Google Scholar 

  15. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.

    Article  PubMed  CAS  Google Scholar 

  16. Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med. 2017;141(5):625–57.

    Article  PubMed  CAS  Google Scholar 

  17. Network NCC. Colon cancer (Version 2.2017 – March 13, 2017). Available from: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf.

  18. Network NCC. Rectal cancer (Version 3.2017 – March 13, 2017). Available from: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf.

  19. Evaluation of Genomic Applications in P, Prevention Working G. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med. 2009;11(1):35–41.

    Article  Google Scholar 

  20. Ladabaum U, Wang G, Terdiman J, Blanco A, Kuppermann M, Boland CR, et al. Strategies to identify the lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann Intern Med. 2011;155(2):69–79.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rubenstein JH, Enns R, Heidelbaugh J, Barkun A, Clinical Guidelines C. American Gastroenterological Association Institute guideline on the diagnosis and management of Lynch syndrome. Gastroenterology. 2015;149(3):777–82. quiz e16–7.

    Article  PubMed  Google Scholar 

  22. Bartley AN, Luthra R, Saraiya DS, Urbauer DL, Broaddus RR. Identification of cancer patients with Lynch syndrome: clinically significant discordances and problems in tissue-based mismatch repair testing. Cancer Prev Res (Phila). 2012;5(2):320–7.

    Article  Google Scholar 

  23. Blake C, Tsao JL, Wu A, Shibata D. Stepwise deletions of polyA sequences in mismatch repair-deficient colorectal cancers. Am J Pathol. 2001;158(5):1867–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kuan SF, Ren B, Brand R, Dudley B, Pai RK. Neoadjuvant therapy in microsatellite-stable colorectal carcinoma induces concomitant loss of MSH6 and Ki-67 expression. Hum Pathol. 2017;63:33–9.

    Article  PubMed  CAS  Google Scholar 

  25. Bao F, Panarelli NC, Rennert H, Sherr DL, Yantiss RK. Neoadjuvant therapy induces loss of MSH6 expression in colorectal carcinoma. Am J Surg Pathol. 2010;34(12):1798–804.

    Article  PubMed  Google Scholar 

  26. Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn. 2008;10(4):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang L. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part II. The utility of microsatellite instability testing. J Mol Diagn. 2008;10(4):301–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Buhard O, Lagrange A, Guilloux A, Colas C, Chouchene M, Wanherdrick K, et al. HSP110 T17 simplifies and improves the microsatellite instability testing in patients with colorectal cancer. J Med Genet. 2016;53(6):377–84.

    Article  PubMed  CAS  Google Scholar 

  29. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics. 2014;30(7):1015–6.

    Article  PubMed  CAS  Google Scholar 

  30. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC. Microsatellite instability detection by next generation sequencing. Clin Chem. 2014;60(9):1192–9.

    Article  PubMed  CAS  Google Scholar 

  31. Nowak JA, Yurgelun MB, Bruce JL, Rojas-Rudilla V, Hall DL, Shivdasani P, et al. Detection of mismatch repair deficiency and microsatellite instability in colorectal adenocarcinoma by targeted next-generation sequencing. J Mol Diagn. 2017;19(1):84–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Funkhouser WK Jr, Lubin IM, Monzon FA, Zehnbauer BA, Evans JP, Ogino S, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012;14(2):91–103.

    Article  PubMed  CAS  Google Scholar 

  33. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.

    PubMed  CAS  Google Scholar 

  34. Deschoolmeester V, Baay M, Wuyts W, Van Marck E, Van Damme N, Vermeulen P, et al. Detection of microsatellite instability in colorectal cancer using an alternative multiplex assay of quasi-monomorphic mononucleotide markers. J Mol Diagn. 2008;10(2):154–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rodriguez-Soler M, Perez-Carbonell L, Guarinos C, Zapater P, Castillejo A, Barbera VM, et al. Risk of cancer in cases of suspected lynch syndrome without germline mutation. Gastroenterology. 2013;144(5):926–32 e1. quiz e13–4.

    Article  PubMed  CAS  Google Scholar 

  36. Haraldsdottir S, Hampel H, Tomsic J, Frankel WL, Pearlman R, de la Chapelle A, et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology. 2014;147(6):1308–16. e1.

    Article  PubMed  Google Scholar 

  37. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA, Goossens M, Ouchene H, Hendriks-Cornelissen SJ, et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology. 2014;146(3):643–6. e8.

    Article  PubMed  CAS  Google Scholar 

  38. Castillejo A, Vargas G, Castillejo MI, Navarro M, Barbera VM, Gonzalez S, et al. Prevalence of germline MUTYH mutations among Lynch-like syndrome patients. Eur J Cancer. 2014;50(13):2241–50.

    Article  PubMed  CAS  Google Scholar 

  39. Morak M, Heidenreich B, Keller G, Hampel H, Laner A, de la Chapelle A, et al. Biallelic MUTYH mutations can mimic lynch syndrome. Eur J Hum Genet. 2014;22(11):1334–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Carethers JM. Differentiating Lynch-like from Lynch syndrome. Gastroenterology. 2014;146(3):602–4.

    Article  PubMed  Google Scholar 

  41. Carethers JM, Stoffel EM. Lynch syndrome and Lynch syndrome mimics: the growing complex landscape of hereditary colon cancer. World J Gastroenterol. 2015;21(31):9253–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shia J. Evolving approach and clinical significance of detecting DNA mismatch repair deficiency in colorectal carcinoma. Semin Diagn Pathol. 2015;32(5):352–61.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK, et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer. 2014;50(5):987–96.

    Article  PubMed  Google Scholar 

  44. Jasperson K, Burt RW. The genetics of colorectal cancer. Surg Oncol Clin N Am. 2015;24(4):683–703.

    Article  PubMed  Google Scholar 

  45. Newton KF, Mallinson EK, Bowen J, Lalloo F, Clancy T, Hill J, et al. Genotype-phenotype correlation in colorectal polyposis. Clin Genet. 2012;81(6):521–31.

    Article  PubMed  CAS  Google Scholar 

  46. Knudsen AL, Bulow S, Tomlinson I, Moslein G, Heinimann K, Christensen IJ, et al. Attenuated familial adenomatous polyposis: results from an international collaborative study. Colorectal Dis. 2010;12(10 Online):e243–9.

    Article  PubMed  CAS  Google Scholar 

  47. Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004;127(2):444–51.

    Article  PubMed  Google Scholar 

  48. Aretz S, Uhlhaas S, Caspari R, Mangold E, Pagenstecher C, Propping P, et al. Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet. 2004;12(1):52–8.

    Article  PubMed  CAS  Google Scholar 

  49. Bulow S, Bjork J, Christensen IJ, Fausa O, Jarvinen H, Moesgaard F, et al. Duodenal adenomatosis in familial adenomatous polyposis. Gut. 2004;53(3):381–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gardner EJ. Follow-up study of a family group exhibiting dominant inheritance for a syndrome including intestinal polyps, osteomas, fibromas and epidermal cysts. Am J Hum Genet. 1962;14:376–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Vogt S, Jones N, Christian D, Engel C, Nielsen M, Kaufmann A, et al. Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology. 2009;137(6):1976–85. e1–10.

    Article  PubMed  CAS  Google Scholar 

  52. Nielsen M, Morreau H, Vasen HF, Hes FJ. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol. 2011;79(1):1–16.

    Article  PubMed  Google Scholar 

  53. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C-->T:a mutations in colorectal tumors. Nat Genet. 2002;30(2):227–32.

    Google Scholar 

  54. Borras E, Taggart MW, Lynch PM, Vilar E. Establishing a diagnostic road map for MUTYH-associated polyposis. Clin Cancer Res. 2014;20(5):1061–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Guarinos C, Juarez M, Egoavil C, Rodriguez-Soler M, Perez-Carbonell L, Salas R, et al. Prevalence and characteristics of MUTYH-associated polyposis in patients with multiple adenomatous and serrated polyps. Clin Cancer Res. 2014;20(5):1158–68.

    Article  CAS  PubMed  Google Scholar 

  56. Church J, Kravochuck S. The “studded” rectum: phenotypic evidence of MYH-associated polyposis. Dis Colon Rectum. 2016;59(6):565–9.

    Article  PubMed  Google Scholar 

  57. Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013;45(2):136–44.

    Article  CAS  PubMed  Google Scholar 

  58. Bellido F, Pineda M, Aiza G, Valdes-Mas R, Navarro M, Puente DA, et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med. 2016;18(4):325–32.

    Article  CAS  PubMed  Google Scholar 

  59. Mehenni H, Blouin JL, Radhakrishna U, Bhardwaj SS, Bhardwaj K, Dixit VB, et al. Peutz-Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. Am J Hum Genet. 1997;61(6):1327–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18(1):38–43.

    Article  PubMed  CAS  Google Scholar 

  61. Karuman P, Gozani O, Odze RD, Zhou XC, Zhu H, Shaw R, et al. The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell. 2001;7(6):1307–19.

    Article  PubMed  CAS  Google Scholar 

  62. Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63.

    Article  PubMed  CAS  Google Scholar 

  63. Jass JR, Williams CB, Bussey HJ, Morson BC. Juvenile polyposis--a precancerous condition. Histopathology. 1988;13(6):619–30.

    Article  PubMed  CAS  Google Scholar 

  64. Bouraoui S, Azouz H, Kechrid H, Lemaiem F, Mzabi-Regaya S. Peutz-Jeghers’ syndrome with malignant development in a hamartomatous polyp: report of one case and review of the literature. Gastroenterol Clin Biol. 2008;32(3):250–4.

    Article  PubMed  CAS  Google Scholar 

  65. Heald B, Mester J, Rybicki L, Orloff MS, Burke CA, Eng C. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology. 2010;139(6):1927–33.

    Article  CAS  PubMed  Google Scholar 

  66. Beggs AD, Latchford AR, Vasen HF, Moslein G, Alonso A, Aretz S, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59(7):975–86.

    Article  PubMed  CAS  Google Scholar 

  67. Gammon A, Jasperson K, Kohlmann W, Burt RW. Hamartomatous polyposis syndromes. Best Pract Res Clin Gastroenterol. 2009;23(2):219–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Menko FH, Kneepkens CM, de Leeuw N, Peeters EA, Van Maldergem L, Kamsteeg EJ, et al. Variable phenotypes associated with 10q23 microdeletions involving the PTEN and BMPR1A genes. Clin Genet. 2008;74(2):145–54.

    Article  PubMed  CAS  Google Scholar 

  69. Brosens LA, van Hattem A, Hylind LM, Iacobuzio-Donahue C, Romans KE, Axilbund J, et al. Risk of colorectal cancer in juvenile polyposis. Gut. 2007;56(7):965–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22(3):183–98.

    Article  PubMed  CAS  Google Scholar 

  71. Eng C, Thiele H, Zhou XP, Gorlin RJ, Hennekam RC, Winter RM. PTEN mutations and proteus syndrome. Lancet. 2001;358(9298):2079–80.

    Article  PubMed  CAS  Google Scholar 

  72. Stanich PP, Owens VL, Sweetser S, Khambatta S, Smyrk TC, Richardson RL, et al. Colonic polyposis and neoplasia in Cowden syndrome. Mayo Clin Proc. 2011;86(6):489–92.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tan C, Du X. KRAS mutation testing in metastatic colorectal cancer. World J Gastroenterol. 2012;18(37):5171–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Mocellin S, Nitti D. Gastrointestinal carcinoid: epidemiological and survival evidence from a large population-based study (n = 25 531). Ann Oncol. 2013;24(12):3040–4.

    Article  PubMed  CAS  Google Scholar 

  75. AJCC cancer staging manual. 8 ed. New York: Springer Science+Business Media; 2016. pages cm p.

    Google Scholar 

  76. Pinchot SN, Holen K, Sippel RS, Chen H. Carcinoid tumors. Oncologist. 2008;13(12):1255–69.

    Article  PubMed  CAS  Google Scholar 

  77. Raut CP, Kulke MH, Glickman JN, Swanson RS, Ashley SW. Carcinoid tumors. Curr Probl Surg. 2006;43(6):383–450.

    Article  PubMed  Google Scholar 

  78. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.

    Article  PubMed  Google Scholar 

  79. Williams ED, Siebenmann RE, Sobin LH. Histological typing of endocrine tumours. 1st ed. Geneva: World Health Organization. International Histological Classification of Tumours; 1980. p. 69.

    Google Scholar 

  80. Solcia E, Kloppel G, Sobin LH. Histological typing of endocrine tumours. 2nd ed. Berlin Heidelberg: Springer; 2000.

    Book  Google Scholar 

  81. Hamilton SR, Aaltonen LA, Organization WH, Cancer IAfRo. Pathology and genetics of tumours of the digestive system. Lyon: IARC Press; 2000.

    Google Scholar 

  82. Lloyd RV, Osamura R, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs. 4th ed. Lyon: International Agency for Research on Cancer; 2017.

    Google Scholar 

  83. Bosman FT, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of the digestive system. 4th ed. Lyon: International Agency for Research on Cancer; 2010. p. 417.

    Google Scholar 

  84. Tang LH, Gonen M, Hedvat C, Modlin IM, Klimstra DS. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. Am J Surg Pathol. 2012;36(12):1761–70.

    Article  PubMed  Google Scholar 

  85. Reid MD, Bagci P, Ohike N, Saka B, Erbarut Seven I, Dursun N, et al. Calculation of the Ki67 index in pancreatic neuroendocrine tumors: a comparative analysis of four counting methodologies. Mod Pathol. 2015;28(5):686–94.

    Article  PubMed  Google Scholar 

  86. Adsay V. Ki67 labeling index in neuroendocrine tumors of the gastrointestinal and pancreatobiliary tract: to count or not to count is not the question, but rather how to count. Am J Surg Pathol. 2012;36(12):1743–6.

    Article  PubMed  Google Scholar 

  87. McCall CM, Shi C, Cornish TC, Klimstra DS, Tang LH, Basturk O, et al. Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate. Am J Surg Pathol. 2013;37(11):1671–7.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Matsukuma K, Olson KA, Gui D, Gandour-Edwards R, Li Y, Beckett L. Synaptophysin-Ki67 double stain: a novel technique that improves interobserver agreement in the grading of well-differentiated gastrointestinal neuroendocrine tumors. Mod Pathol. 2017;30(4):620–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Benafif S, Eeles R. Diagnosis and management of hereditary carcinoids. Recent Results Cancer Res. 2016;205:149–68.

    Article  PubMed  Google Scholar 

  90. Sei Y, Zhao X, Forbes J, Szymczak S, Li Q, Trivedi A, et al. A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology. 2015;149(1):67–78.

    Article  PubMed  CAS  Google Scholar 

  91. Katdare MV, Fichera A, Heimann TM. Familial rectal carcinoid: report of two first-degree relatives with rectal carcinoid and review of the literature. Tech Coloproctol. 2006;10(2):143–6.

    Article  PubMed  CAS  Google Scholar 

  92. Doi M, Ikawa O, Taniguchi H, Kawamura T, Katsura K. Multiple rectal carcinoid tumors in monozygotic twins. Clin J Gastroenterol. 2016;9(4):215–21.

    Article  PubMed  Google Scholar 

  93. Hiripi E, Bermejo JL, Sundquist J, Hemminki K. Familial gastrointestinal carcinoid tumours and associated cancers. Ann Oncol. 2009;20(5):950–4.

    Article  PubMed  CAS  Google Scholar 

  94. Hassan C, Repici A, Rex DK. Serrated polyposis syndrome: risk stratification or reduction? Gut. 2016;65(7):1070–2.

    Article  PubMed  CAS  Google Scholar 

  95. Heetfeld M, Chougnet CN, Olsen IH, Rinke A, Borbath I, Crespo G, et al. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015;22(4):657–64.

    Article  PubMed  CAS  Google Scholar 

  96. Velayoudom-Cephise FL, Duvillard P, Foucan L, Hadoux J, Chougnet CN, Leboulleux S, et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer. 2013;20(5):649–57.

    Article  PubMed  Google Scholar 

  97. Coriat R, Walter T, Terris B, Couvelard A, Ruszniewski P. Gastroenteropancreatic well-differentiated grade 3 neuroendocrine tumors: review and position statement. Oncologist. 2016;21(10):1191–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Basturk O, Yang Z, Tang LH, Hruban RH, Adsay V, McCall CM, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogeneous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39(5):683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Reid MD, Balci S, Saka B, Adsay NV. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol. 2014;25(1):65–79.

    Article  PubMed  CAS  Google Scholar 

  100. Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013;24(1):152–60.

    Article  PubMed  CAS  Google Scholar 

  101. Tang LH, Basturk O, Sue JJ, Klimstra DS. A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas. Am J Surg Pathol. 2016;40(9):1192–202.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Smith JD, Reidy DL, Goodman KA, Shia J, Nash GM. A retrospective review of 126 high-grade neuroendocrine carcinomas of the colon and rectum. Ann Surg Oncol. 2014;21(9):2956–62.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rindi G, Kloppel G, Couvelard A, Komminoth P, Korner M, Lopes JM, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2007;451(4):757–62.

    Article  PubMed  CAS  Google Scholar 

  104. Rindi G, Petrone G, Inzani F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endocr Pathol. 2014;25(2):186–92.

    Article  PubMed  CAS  Google Scholar 

  105. La Rosa S, Marando A, Sessa F, Capella C. Mixed adenoneuroendocrine carcinomas (MANECs) of the gastrointestinal tract: an update. Cancers (Basel). 2012;4(1):11–30.

    Article  PubMed  PubMed Central  Google Scholar 

  106. La Rosa S, Marando A, Furlan D, Sahnane N, Capella C. Colorectal poorly differentiated neuroendocrine carcinomas and mixed adenoneuroendocrine carcinomas: insights into the diagnostic immunophenotype, assessment of methylation profile, and search for prognostic markers. Am J Surg Pathol. 2012;36(4):601–11.

    Article  PubMed  Google Scholar 

  107. Capella C, La Rosa S, Uccella S, Billo P, Cornaggia M. Mixed endocrine-exocrine tumors of the gastrointestinal tract. Semin Diagn Pathol. 2000;17(2):91–103.

    PubMed  CAS  Google Scholar 

  108. Volante M, Rindi G, Papotti M. The grey zone between pure (neuro)endocrine and non-(neuro)endocrine tumours: a comment on concepts and classification of mixed exocrine-endocrine neoplasms. Virchows Arch. 2006;449(5):499–506.

    Article  PubMed  Google Scholar 

  109. Lewin K. Carcinoid tumors and the mixed (composite) glandular-endocrine cell carcinomas. Am J Surg Pathol. 1987;11(Suppl 1):71–86.

    Article  PubMed  Google Scholar 

  110. Volante M, Righi L, Asioli S, Bussolati G, Papotti M. Goblet cell carcinoids and other mixed neuroendocrine/nonneuroendocrine neoplasms. Virchows Arch. 2007;451(Suppl 1):S61–9.

    Article  PubMed  Google Scholar 

  111. Hervieu V, Scoazec JY. Mixed endocrine tumors. Ann Pathol. 2005;25(6):511–28.

    Article  PubMed  Google Scholar 

  112. Weissferdt A, Tang X, Wistuba II, Moran CA. Comparative immunohistochemical analysis of pulmonary and thymic neuroendocrine carcinomas using PAX8 and TTF-1. Mod Pathol. 2013;26(12):1554–60.

    Article  PubMed  CAS  Google Scholar 

  113. Lin X, Saad RS, Luckasevic TM, Silverman JF, Liu Y. Diagnostic value of CDX-2 and TTF-1 expressions in separating metastatic neuroendocrine neoplasms of unknown origin. Appl Immunohistochem Mol Morphol. 2007;15(4):407–14.

    Article  PubMed  CAS  Google Scholar 

  114. Ordonez NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol. 2012;19(3):140–51.

    Article  PubMed  CAS  Google Scholar 

  115. Graham RP, Shrestha B, Caron BL, Smyrk TC, Grogg KL, Lloyd RV, et al. Islet-1 is a sensitive but not entirely specific marker for pancreatic neuroendocrine neoplasms and their metastases. Am J Surg Pathol. 2013;37(3):399–405.

    Article  PubMed  Google Scholar 

  116. Schmitt AM, Riniker F, Anlauf M, Schmid S, Soltermann A, Moch H, et al. Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol. 2008;32(3):420–5.

    Article  PubMed  Google Scholar 

  117. Agaimy A, Erlenbach-Wunsch K, Konukiewitz B, Schmitt AM, Rieker RJ, Vieth M, et al. ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol. 2013;26(7):995–1003.

    Article  PubMed  CAS  Google Scholar 

  118. Yang EJ, Kong CS, Longacre TA. Vulvar and anal intraepithelial neoplasia: terminology, diagnosis, and ancillary studies. Adv Anat Pathol. 2017;24(3):136–50.

    Article  PubMed  Google Scholar 

  119. Koo J, Mertens RB, Mirocha JM, Wang HL, Dhall D. Value of islet 1 and PAX8 in identifying metastatic neuroendocrine tumors of pancreatic origin. Mod Pathol. 2012;25(6):893–901.

    Article  PubMed  CAS  Google Scholar 

  120. Mehta RS, Song M, Nishihara R, Drew DA, Wu K, Qian ZR, et al. Dietary patterns and risk of colorectal cancer: analysis by tumor location and molecular subtypes. Gastroenterology. 2017;152(8):1944–53. e1.

    Article  PubMed  CAS  Google Scholar 

  121. Kim JY, Hong SM. Recent updates on neuroendocrine tumors from the gastrointestinal and Pancreatobiliary tracts. Arch Pathol Lab Med. 2016;140(5):437–48.

    Article  PubMed  CAS  Google Scholar 

  122. Kim KW, Krajewski KM, Nishino M, Jagannathan JP, Shinagare AB, Tirumani SH, et al. Update on the management of gastroenteropancreatic neuroendocrine tumors with emphasis on the role of imaging. AJR Am J Roentgenol. 2013;201(4):811–24.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Koo J, Dhall D. Problems with the diagnosis of metastatic neuroendocrine neoplasms. Which diagnostic criteria should we use to determine tumor origin and help guide therapy? Semin Diagn Pathol. 2015;32(6):456–68.

    Article  PubMed  Google Scholar 

  124. Hallet J, Law CH, Cukier M, Saskin R, Liu N, Singh S. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer. 2015;121(4):589–97.

    Article  PubMed  Google Scholar 

  125. Dogeas E, Cameron JL, Wolfgang CL, Hirose K, Hruban RH, Makary MA, et al. Duodenal and ampullary carcinoid tumors: size predicts necessity for lymphadenectomy. J Gastrointest Surg. 2017;21(8):1262–9.

    Article  PubMed  Google Scholar 

  126. Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst. 2008;100(16):1184–7.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ryerson AB, Eheman CR, Altekruse SF, Ward JW, Jemal A, Sherman RL, et al. Annual Report to the Nation on the Status of Cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer. 2016;122(9):1312–37.

    Article  PubMed  Google Scholar 

  128. Wang HH, Mangano MM, Antonioli DA. Evaluation of T-lymphocytes in esophageal mucosal biopsies. Mod Pathol. 1994;7(1):55–8.

    PubMed  CAS  Google Scholar 

  129. De La Pava S, Nigogosyan G, Pickren JW, Cabrera A. Melanosis of the esophagus. Cancer. 1963;16:48–50.

    Article  Google Scholar 

  130. Odze RD, Goldblum JR. Odze and Goldblum surgical pathology of the GI tract, liver, biliary tract, and pancreas. Philadelphia: Elsevier - Health Sciences Division; 2014.

    Google Scholar 

  131. Crespi M, Munoz N, Grassi A, Qiong S, Jing WK, Jien LJ. Precursor lesions of oesophageal cancer in a low-risk population in China: comparison with high-risk populations. Int J Cancer. 1984;34(5):599–602.

    Article  PubMed  CAS  Google Scholar 

  132. Dawsey SM, Lewin KJ, Wang GQ, Liu FS, Nieberg RK, Yu Y, et al. Squamous esophageal histology and subsequent risk of squamous cell carcinoma of the esophagus. A prospective follow-up study from Linxian, China. Cancer. 1994;74(6):1686–92.

    Article  PubMed  CAS  Google Scholar 

  133. Lopes AB, Fagundes RB. Esophageal squamous cell carcinoma - precursor lesions and early diagnosis. World J Gastrointest Endosc. 2012;4(1):9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mandard AM, Marnay J, Gignoux M, Segol P, Blanc L, Ollivier JM, et al. Cancer of the esophagus and associated lesions: detailed pathologic study of 100 esophagectomy specimens. Hum Pathol. 1984;15(7):660–9.

    Article  PubMed  CAS  Google Scholar 

  135. Shimizu Y, Yoshida T, Kato M, Hirota J, Ono S, Nakagawa M, et al. Low-grade dysplasia component in early invasive squamous cell carcinoma of the esophagus. J Gastroenterol Hepatol. 2010;25(2):314–8.

    Article  PubMed  Google Scholar 

  136. Wang GQ, Abnet CC, Shen Q, Lewin KJ, Sun XD, Roth MJ, et al. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population. Gut. 2005;54(2):187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Takahashi H, Arimura Y, Masao H, Okahara S, Tanuma T, Kodaira J, et al. Endoscopic submucosal dissection is superior to conventional endoscopic resection as a curative treatment for early squamous cell carcinoma of the esophagus (with video). Gastrointest Endosc. 2010;72(2):255–64. 64 e1–2.

    Article  PubMed  Google Scholar 

  138. Hashimoto CL, Iriya K, Baba ER, Navarro-Rodriguez T, Zerbini MC, Eisig JN, et al. Lugol’s dye spray chromoendoscopy establishes early diagnosis of esophageal cancer in patients with primary head and neck cancer. Am J Gastroenterol. 2005;100(2):275–82.

    Article  PubMed  Google Scholar 

  139. Takenaka R, Kawahara Y, Okada H, Hori K, Inoue M, Kawano S, et al. Narrow-band imaging provides reliable screening for esophageal malignancy in patients with head and neck cancers. Am J Gastroenterol. 2009;104(12):2942–8.

    Article  PubMed  Google Scholar 

  140. Tajima Y, Nakanishi Y, Tachimori Y, Kato H, Watanabe H, Yamaguchi H, et al. Significance of involvement by squamous cell carcinoma of the ducts of esophageal submucosal glands. Analysis of 201 surgically resected superficial squamous cell carcinomas. Cancer. 2000;89(2):248–54.

    Article  PubMed  CAS  Google Scholar 

  141. Abraham SC, Wang H, Wang KK, Wu TT. Paget cells in the esophagus: assessment of their histopathologic features and near-universal association with underlying esophageal adenocarcinoma. Am J Surg Pathol. 2008;32(7):1068–74.

    Article  PubMed  Google Scholar 

  142. Wang WC, Wu TT, Chandan VS, Lohse CM, Zhang L. Ki-67 and ProExC are useful immunohistochemical markers in esophageal squamous intraepithelial neoplasia. Hum Pathol. 2011;42(10):1430–7.

    Article  PubMed  CAS  Google Scholar 

  143. Richter JE. Surgery for reflux disease: reflections of a gastroenterologist. N Engl J Med. 1992;326(12):825–7.

    Article  PubMed  CAS  Google Scholar 

  144. Wild CP, Hardie LJ. Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer. 2003;3(9):676–84.

    Article  PubMed  CAS  Google Scholar 

  145. Westhoff B, Brotze S, Weston A, McElhinney C, Cherian R, Mayo MS, et al. The frequency of Barrett’s esophagus in high-risk patients with chronic GERD. Gastrointest Endosc. 2005;61(2):226–31.

    Article  PubMed  Google Scholar 

  146. Gerson LB, Shetler K, Triadafilopoulos G. Prevalence of Barrett’s esophagus in asymptomatic individuals. Gastroenterology. 2002;123(2):461–7.

    Article  PubMed  Google Scholar 

  147. Cameron AJ. Epidemiology of columnar-lined esophagus and adenocarcinoma. Gastroenterol Clin N Am. 1997;26(3):487–94.

    Article  CAS  Google Scholar 

  148. Hampel H, Abraham NS, El-Serag HB. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann Intern Med. 2005;143(3):199–211.

    Article  PubMed  Google Scholar 

  149. Kamat P, Wen S, Morris J, Anandasabapathy S. Exploring the association between elevated body mass index and Barrett’s esophagus: a systematic review and meta-analysis. Ann Thorac Surg. 2009;87(2):655–62.

    Article  PubMed  Google Scholar 

  150. Wang KK, Sampliner RE, Practice Parameters Committee of the American College of G. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol. 2008;103(3):788–97.

    Article  PubMed  Google Scholar 

  151. Sampliner RE. Practice guidelines on the diagnosis, surveillance, and therapy of Barrett’s esophagus. The Practice Parameters Committee of the American College of Gastroenterology. Am J Gastroenterol. 1998;93(7):1028–32.

    Article  PubMed  CAS  Google Scholar 

  152. Riddell RH. The biopsy diagnosis of gastroesophageal reflux disease, “carditis,” and Barrett’s esophagus, and sequelae of therapy. Am J Surg Pathol. 1996;20(Suppl 1):S31–50.

    Article  PubMed  Google Scholar 

  153. Sharma P, McQuaid K, Dent J, Fennerty MB, Sampliner R, Spechler S, et al. A critical review of the diagnosis and management of Barrett’s esophagus: the AGA Chicago Workshop. Gastroenterology. 2004;127(1):310–30.

    Article  PubMed  Google Scholar 

  154. Odze RD. Unraveling the mystery of the gastroesophageal junction: a pathologist’s perspective. Am J Gastroenterol. 2005;100(8):1853–67.

    Article  PubMed  Google Scholar 

  155. Playford RJ. New British Society of Gastroenterology (BSG) guidelines for the diagnosis and management of Barrett’s oesophagus. Gut. 2006;55(4):442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Ogiya K, Kawano T, Ito E, Nakajima Y, Kawada K, Nishikage T, et al. Lower esophageal palisade vessels and the definition of Barrett’s esophagus. Dis Esophagus. 2008;21(7):645–9.

    Article  PubMed  CAS  Google Scholar 

  157. Gatenby PA, Ramus JR, Caygill CP, Shepherd NA, Watson A. Relevance of the detection of intestinal metaplasia in non-dysplastic columnar-lined oesophagus. Scand J Gastroenterol. 2008;43(5):524–30.

    Article  PubMed  Google Scholar 

  158. Kelty CJ, Gough MD, Van Wyk Q, Stephenson TJ, Ackroyd R. Barrett’s oesophagus: intestinal metaplasia is not essential for cancer risk. Scand J Gastroenterol. 2007;42(11):1271–4.

    Article  PubMed  Google Scholar 

  159. Glickman JN, Wang H, Das KM, Goyal RK, Spechler SJ, Antonioli D, et al. Phenotype of Barrett’s esophagus and intestinal metaplasia of the distal esophagus and gastroesophageal junction: an immunohistochemical study of cytokeratins 7 and 20, Das-1 and 45 MI. Am J Surg Pathol. 2001;25(1):87–94.

    Article  PubMed  CAS  Google Scholar 

  160. Conio M, Filiberti R, Blanchi S, Ferraris R, Marchi S, Ravelli P, et al. Risk factors for Barrett’s esophagus: a case-control study. Int J Cancer. 2002;97(2):225–9.

    Article  PubMed  CAS  Google Scholar 

  161. Ofman JJ, Shaheen NJ, Desai AA, Moody B, Bozymski EM, Weinstein WM. The quality of care in Barrett’s esophagus: endoscopist and pathologist practices. Am J Gastroenterol. 2001;96(3):876–81.

    Article  PubMed  CAS  Google Scholar 

  162. Iftikhar SY, James PD, Steele RJ, Hardcastle JD, Atkinson M. Length of Barrett’s oesophagus: an important factor in the development of dysplasia and adenocarcinoma. Gut. 1992;33(9):1155–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Sikkema M, Looman CW, Steyerberg EW, Kerkhof M, Kastelein F, van Dekken H, et al. Predictors for neoplastic progression in patients with Barrett’s Esophagus: a prospective cohort study. Am J Gastroenterol. 2011;106(7):1231–8.

    Article  PubMed  CAS  Google Scholar 

  164. Avidan B, Sonnenberg A, Schnell TG, Chejfec G, Metz A, Sontag SJ. Hiatal hernia size, Barrett’s length, and severity of acid reflux are all risk factors for esophageal adenocarcinoma. Am J Gastroenterol. 2002;97(8):1930–6.

    Article  PubMed  Google Scholar 

  165. Rudolph RE, Vaughan TL, Storer BE, Haggitt RC, Rabinovitch PS, Levine DS, et al. Effect of segment length on risk for neoplastic progression in patients with Barrett esophagus. Ann Intern Med. 2000;132(8):612–20.

    Article  PubMed  CAS  Google Scholar 

  166. Hornick JL, Blount PL, Sanchez CA, Cowan DS, Ayub K, Maley CC, et al. Biologic properties of columnar epithelium underneath reepithelialized squamous mucosa in Barrett’s esophagus. Am J Surg Pathol. 2005;29(3):372–80.

    Article  PubMed  Google Scholar 

  167. Mino-Kenudson M, Ban S, Ohana M, Puricelli W, Deshpande V, Shimizu M, et al. Buried dysplasia and early adenocarcinoma arising in Barrett esophagus after porfimer-photodynamic therapy. Am J Surg Pathol. 2007;31(3):403–9.

    Article  PubMed  Google Scholar 

  168. Shaheen NJ, Sharma P, Overholt BF, Wolfsen HC, Sampliner RE, Wang KK, et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360(22):2277–88.

    Article  PubMed  CAS  Google Scholar 

  169. Weinstein WM, Ippoliti AF. The diagnosis of Barrett’s esophagus: goblets, goblets, goblets. Gastrointest Endosc. 1996;44(1):91–5.

    Article  PubMed  CAS  Google Scholar 

  170. Srivastava A, Odze RD, Lauwers GY, Redston M, Antonioli DA, Glickman JN. Morphologic features are useful in distinguishing Barrett esophagus from carditis with intestinal metaplasia. Am J Surg Pathol. 2007;31(11):1733–41.

    Article  PubMed  Google Scholar 

  171. Antonioli DA, Wang HH. Morphology of Barrett’s esophagus and Barrett’s-associated dysplasia and adenocarcinoma. Gastroenterol Clin N Am. 1997;26(3):495–506.

    Article  CAS  Google Scholar 

  172. Odze RD. Diagnosis and grading of dysplasia in Barrett’s oesophagus. J Clin Pathol. 2006;59(10):1029–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Wang HH, Zeroogian JM, Spechler SJ, Goyal RK, Antonioli DA. Prevalence and significance of pancreatic acinar metaplasia at the gastroesophageal junction. Am J Surg Pathol. 1996;20(12):1507–10.

    Article  PubMed  CAS  Google Scholar 

  174. Chen YY, Wang HH, Antonioli DA, Spechler SJ, Zeroogian JM, Goyal R, et al. Significance of acid-mucin-positive nongoblet columnar cells in the distal esophagus and gastroesophageal junction. Hum Pathol. 1999;30(12):1488–95.

    Article  PubMed  CAS  Google Scholar 

  175. Shields HM, Rosenberg SJ, Zwas FR, Ransil BJ, Lembo AJ, Odze R. Prospective evaluation of multilayered epithelium in Barrett’s esophagus. Am J Gastroenterol. 2001;96(12):3268–73.

    Article  PubMed  CAS  Google Scholar 

  176. Hahn HP, Shahsafaei A, Odze RD. Vascular and lymphatic properties of the superficial and deep lamina propria in Barrett esophagus. Am J Surg Pathol. 2008;32(10):1454–61.

    Article  PubMed  Google Scholar 

  177. Reid BJ, Haggitt RC, Rubin CE, Roth G, Surawicz CM, Van Belle G, et al. Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Hum Pathol. 1988;19(2):166–78.

    Article  PubMed  CAS  Google Scholar 

  178. Schlemper RJ, Riddell RH, Kato Y, Borchard F, Cooper HS, Dawsey SM, et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut. 2000;47(2):251–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Lomo LC, Blount PL, Sanchez CA, Li X, Galipeau PC, Cowan DS, et al. Crypt dysplasia with surface maturation: a clinical, pathologic, and molecular study of a Barrett’s esophagus cohort. Am J Surg Pathol. 2006;30(4):423–35.

    Article  PubMed  Google Scholar 

  180. Brown IS, Whiteman DC, Lauwers GY. Foveolar type dysplasia in Barrett esophagus. Mod Pathol. 2010;23(6):834–43.

    Article  PubMed  CAS  Google Scholar 

  181. Souza RF, Morales CP, Spechler SJ. Review article: a conceptual approach to understanding the molecular mechanisms of cancer development in Barrett’s oesophagus. Aliment Pharmacol Ther. 2001;15(8):1087–100.

    Article  PubMed  CAS  Google Scholar 

  182. Hornick JL, Odze RD. Neoplastic precursor lesions in Barrett’s esophagus. Gastroenterol Clin N Am. 2007;36(4):775–96. v.

    Article  Google Scholar 

  183. Thurberg BL, Duray PH, Odze RD. Polypoid dysplasia in Barrett’s esophagus: a clinicopathologic, immunohistochemical, and molecular study of five cases. Hum Pathol. 1999;30(7):745–52.

    Article  PubMed  CAS  Google Scholar 

  184. Buttar NS, Wang KK, Sebo TJ, Riehle DM, Krishnadath KK, Lutzke LS, et al. Extent of high-grade dysplasia in Barrett’s esophagus correlates with risk of adenocarcinoma. Gastroenterology. 2001;120(7):1630–9.

    Article  PubMed  CAS  Google Scholar 

  185. Reid BJ, Blount PL, Feng Z, Levine DS. Optimizing endoscopic biopsy detection of early cancers in Barrett’s high-grade dysplasia. Am J Gastroenterol. 2000;95(11):3089–96.

    Article  PubMed  CAS  Google Scholar 

  186. Asthana N, Mandich D, Ligato S. Esophageal polypoid dysplasia of gastric foveolar phenotype with focal intramucosal carcinoma associated with Barrett’s esophagus. Am J Surg Pathol. 2008;32(10):1581–5.

    Article  PubMed  Google Scholar 

  187. Montgomery E, Bronner MP, Greenson JK, Haber MM, Hart J, Lamps LW, et al. Are ulcers a marker for invasive carcinoma in Barrett's esophagus? Data from a diagnostic variability study with clinical follow-up. Am J Gastroenterol. 2002;97(1):27–31.

    Article  PubMed  Google Scholar 

  188. Montgomery E, Bronner MP, Goldblum JR, Greenson JK, Haber MM, Hart J, et al. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol. 2001;32(4):368–78.

    Article  PubMed  CAS  Google Scholar 

  189. Zhang X, Huang Q, Goyal RK, Odze RD. DNA ploidy abnormalities in basal and superficial regions of the crypts in Barrett’s esophagus and associated neoplastic lesions. Am J Surg Pathol. 2008;32(9):1327–35.

    Article  PubMed  Google Scholar 

  190. Rucker-Schmidt RL, Sanchez CA, Blount PL, Ayub K, Li X, Rabinovitch PS, et al. Nonadenomatous dysplasia in Barrett esophagus: a clinical, pathologic, and DNA content flow cytometric study. Am J Surg Pathol. 2009;33(6):886–93.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Mahajan D, Bennett AE, Liu X, Bena J, Bronner MP. Grading of gastric foveolar-type dysplasia in Barrett’s esophagus. Mod Pathol. 2010;23(1):1–11.

    Article  PubMed  Google Scholar 

  192. Naini BV, Souza RF, Odze RD. Barrett’s esophagus: a comprehensive and contemporary review for pathologists. Am J Surg Pathol. 2016;40(5):e45–66.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Cook MB, Chow WH, Devesa SS. Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977–2005. Br J Cancer. 2009;101(5):855–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Bosman FT, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of the digestive system. Lyon: IARC Press; 2010. p. 417.

    Google Scholar 

  195. Ina H, Shibuya H, Ohashi I, Kitagawa M. The frequency of a concomitant early esophageal cancer in male patients with oral and oropharyngeal cancer. Screening results using Lugol dye endoscopy. Cancer. 1994;73(8):2038–41.

    Article  PubMed  CAS  Google Scholar 

  196. Takubo K, Aida J, Sawabe M, Kurosumi M, Arima M, Fujishiro M, et al. Early squamous cell carcinoma of the oesophagus: the Japanese viewpoint. Histopathology. 2007;51(6):733–42.

    Article  PubMed  CAS  Google Scholar 

  197. Lin DC, Du XL, Wang MR. Protein alterations in ESCC and clinical implications: a review. Dis Esophagus. 2009;22(1):9–20.

    Article  PubMed  Google Scholar 

  198. Lu YK, Li YM, Gu YZ. Cancer of esophagus and esophagogastric junction: analysis of results of 1,025 resections after 5 to 20 years. Ann Thorac Surg. 1987;43(2):176–81.

    Article  PubMed  CAS  Google Scholar 

  199. Ide H, Nakamura T, Hayashi K, Endo T, Kobayashi A, Eguchi R, et al. Esophageal squamous cell carcinoma: pathology and prognosis. World J Surg. 1994;18(3):321–30.

    Article  PubMed  CAS  Google Scholar 

  200. Sarbia M, Porschen R, Borchard F, Horstmann O, Willers R, Gabbert HE. Incidence and prognostic significance of vascular and neural invasion in squamous cell carcinomas of the esophagus. Int J Cancer. 1995;61(3):333–6.

    Article  PubMed  CAS  Google Scholar 

  201. Sarbia M, Bittinger F, Porschen R, Dutkowski P, Willers R, Gabbert HE. Prognostic value of histopathologic parameters of esophageal squamous cell carcinoma. Cancer. 1995;76(6):922–7.

    Article  PubMed  CAS  Google Scholar 

  202. Amin MB, Edge SB, American Joint Committee on Cancer. AJCC cancer staging manual. 8th ed. Switzerland: Springer; 2017. p. xvii. 1024 pages.

    Book  Google Scholar 

  203. Shimada H, Kitabayashi H, Nabeya Y, Okazumi S, Matsubara H, Funami Y, et al. Treatment response and prognosis of patients after recurrence of esophageal cancer. Surgery. 2003;133(1):24–31.

    Article  PubMed  Google Scholar 

  204. Mori M, Matsuda H, Kuwano H, Matsuura H, Sugimachi K. Oesophageal squamous cell carcinoma with lymphoid stroma. A case report. Virchows Arch A Pathol Anat Histopathol. 1989;415(5):473–9.

    Article  PubMed  CAS  Google Scholar 

  205. Takubo K, Takai A, Takayama S, Sasajima K, Yamashita K, Fujita K. Intraductal spread of esophageal squamous cell carcinoma. Cancer. 1987;59(10):1751–7.

    Article  PubMed  CAS  Google Scholar 

  206. Tsang WY, Chan JK, Lee KC, Leung AK, Fu YT. Basaloid-squamous carcinoma of the upper aerodigestive tract and so-called adenoid cystic carcinoma of the oesophagus: the same tumour type? Histopathology. 1991;19(1):35–46.

    Article  PubMed  CAS  Google Scholar 

  207. Kobayashi Y, Nakanishi Y, Taniguchi H, Sekine S, Igaki H, Tachimori Y, et al. Histological diversity in basaloid squamous cell carcinoma of the esophagus. Dis Esophagus. 2009;22(3):231–8.

    Article  PubMed  CAS  Google Scholar 

  208. Osborn NK, Keate RF, Trastek VF, Nguyen CC. Verrucous carcinoma of the esophagus: clinicopathophysiologic features and treatment of a rare entity. Dig Dis Sci. 2003;48(3):465–74.

    Article  PubMed  CAS  Google Scholar 

  209. Lauwers GY, Grant LD, Scott GV, Carr NJ, Sobin LH. Spindle cell squamous carcinoma of the esophagus: analysis of ploidy and tumor proliferative activity in a series of 13 cases. Hum Pathol. 1998;29(8):863–8.

    Article  PubMed  CAS  Google Scholar 

  210. Hanada M, Nakano K, Ii Y, Yamashita H. Carcinosarcoma of the esophagus with osseous and cartilagenous production. A combined study of keratin immunohistochemistry and electron microscopy. Acta Pathol Jpn. 1984;34(3):669–78.

    PubMed  CAS  Google Scholar 

  211. Boone J, van Hillegersberg R, Offerhaus GJ, van Diest PJ, Borel Rinkes IH, Ten Kate FJ. Targets for molecular therapy in esophageal squamous cell carcinoma: an immunohistochemical analysis. Dis Esophagus. 2009;22(6):496–504.

    Article  PubMed  CAS  Google Scholar 

  212. Sawada G, Niida A, Hirata H, Komatsu H, Uchi R, Shimamura T, et al. An integrative analysis to identify driver genes in esophageal squamous cell carcinoma. PLoS One. 2015;10(10):e0139808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Montesano R, Hollstein M, Hainaut P. Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int J Cancer. 1996;69(3):225–35.

    Article  PubMed  CAS  Google Scholar 

  214. Lagergren J, Bergstrom R, Nyren O. Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med. 1999;130(11):883–90.

    Article  PubMed  CAS  Google Scholar 

  215. Gatenby PA, Caygill CP, Ramus JR, Charlett A, Fitzgerald RC, Watson A. Short segment columnar-lined oesophagus: an underestimated cancer risk? A large cohort study of the relationship between Barrett's columnar-lined oesophagus segment length and adenocarcinoma risk. Eur J Gastroenterol Hepatol. 2007;19(11):969–75.

    Article  PubMed  Google Scholar 

  216. Lagergren J, Bergstrom R, Adami HO, Nyren O. Association between medications that relax the lower esophageal sphincter and risk for esophageal adenocarcinoma. Ann Intern Med. 2000;133(3):165–75.

    Article  PubMed  CAS  Google Scholar 

  217. Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2005;97(2):142–6.

    Article  PubMed  Google Scholar 

  218. Vizcaino AP, Moreno V, Lambert R, Parkin DM. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973-1995. Int J Cancer. 2002;99(6):860–8.

    Article  PubMed  CAS  Google Scholar 

  219. Corley DA, Levin TR, Habel LA, Weiss NS, Buffler PA. Surveillance and survival in Barrett’s adenocarcinomas: a population-based study. Gastroenterology. 2002;122(3):633–40.

    Article  PubMed  Google Scholar 

  220. Smith RR, Hamilton SR, Boitnott JK, Rogers EL. The spectrum of carcinoma arising in Barrett’s esophagus. A clinicopathologic study of 26 patients. Am J Surg Pathol. 1984;8(8):563–73.

    Article  PubMed  CAS  Google Scholar 

  221. Hamilton SR, Smith RR. The relationship between columnar epithelial dysplasia and invasive adenocarcinoma arising in Barrett’s esophagus. Am J Clin Pathol. 1987;87(3):301–12.

    Article  PubMed  CAS  Google Scholar 

  222. Chejfec G, Jablokow VR, Gould VE. Linitis plastica carcinoma of the esophagus. Cancer. 1983;51(11):2139–43.

    Article  PubMed  CAS  Google Scholar 

  223. Donahue JM, Nichols FC, Li Z, Schomas DA, Allen MS, Cassivi SD, et al. Complete pathologic response after neoadjuvant chemoradiotherapy for esophageal cancer is associated with enhanced survival. Ann Thorac Surg. 2009;87(2):392–8. discussion 8-9.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Hornick JL, Farraye FA, Odze RD. Prevalence and significance of prominent mucin pools in the esophagus post neoadjuvant chemoradiotherapy for Barrett’s-associated adenocarcinoma. Am J Surg Pathol. 2006;30(1):28–35.

    Article  PubMed  Google Scholar 

  225. Torres C, Turner JR, Wang HH, Richards W, Sugarbaker D, Shahsafaei A, et al. Pathologic prognostic factors in Barrett’s associated adenocarcinoma: a follow-up study of 96 patients. Cancer. 1999;85(3):520–8.

    Article  PubMed  CAS  Google Scholar 

  226. Rice TW, Patil DT, Blackstone EH. 8th edition AJCC/UICC staging of cancers of the esophagus and esophagogastric junction: application to clinical practice. Ann Cardiothorac Surg. 2017;6(2):119–30.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Hamilton K, Chiappori A, Olson S, Sawyers J, Johnson D, Washington K. Prevalence and prognostic significance of neuroendocrine cells in esophageal adenocarcinoma. Mod Pathol. 2000;13(5):475–81.

    Article  PubMed  CAS  Google Scholar 

  228. Yachida S, Nakanishi Y, Shimoda T, Nimura S, Igaki H, Tachimori Y, et al. Adenosquamous carcinoma of the esophagus. Clinicopathologic study of 18 cases. Oncology. 2004;66(3):218–25.

    Article  PubMed  Google Scholar 

  229. Gowryshankar A, Nagaraja V, Eslick GD. HER2 status in Barrett’s esophagus & esophageal cancer: a meta analysis. J Gastrointest Oncol. 2014;5(1):25–35.

    PubMed  PubMed Central  Google Scholar 

  230. Bartley AN, Washington MK, Ventura CB, Ismaila N, Colasacco C, Benson AB 3rd, et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med. 2016;140(12):1345–63.

    Article  PubMed  Google Scholar 

  231. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    Article  PubMed  CAS  Google Scholar 

  232. Hofmann M, Stoss O, Shi D, Buttner R, van de Vijver M, Kim W, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52(7):797–805.

    Article  PubMed  CAS  Google Scholar 

  233. Ajani JA, Bentrem DJ, Besh S, D’Amico TA, Das P, Denlinger C, et al. Gastric cancer, version 2.2013: featured updates to the NCCN Guidelines. J Natl Compr Cancer Netw. 2013;11(5):531–46.

    Article  CAS  Google Scholar 

  234. Bell-Thomson J, Haggitt RC, Ellis FH Jr. Mucoepidermoid and adenoid cystic carcinomas of the esophagus. J Thorac Cardiovasc Surg. 1980;79(3):438–46.

    Article  PubMed  CAS  Google Scholar 

  235. Woodard BH, Shelburne JD, Vollmer RT, Postlethwait RW. Mucoepidermoid carcinoma of the esophagus: a case report. Hum Pathol. 1978;9(3):352–4.

    Article  PubMed  CAS  Google Scholar 

  236. Sasajima K, Watanabe M, Takubo K, Takai A, Yamashita K, Onda M. Mucoepidermoid carcinoma of the esophagus: report of two cases and review of the literature. Endoscopy. 1990;22(3):140–3.

    Article  PubMed  CAS  Google Scholar 

  237. Akagi I, Miyashita M, Makino H, Nomura T, Ohkawa K, Tajiri T. Basaloid squamous cell carcinoma of the esophagus: report of two cases. J Nippon Med Sch. 2008;75(6):354–60.

    Article  PubMed  Google Scholar 

  238. Kabuto T, Taniguchi K, Iwanaga T, Terasawa T, Sano M, Tateishi R, et al. Primary adenoid cystic carcinoma of the esophagus: report of a case. Cancer. 1979;43(6):2452–6.

    Article  PubMed  CAS  Google Scholar 

  239. Hoda SA, Hajdu SI. Small cell carcinoma of the esophagus. Cytology and immunohistology in four cases. Acta Cytol. 1992;36(2):113–20.

    PubMed  CAS  Google Scholar 

  240. Modlin IM, Shapiro MD, Kidd M. An analysis of rare carcinoid tumors: clarifying these clinical conundrums. World J Surg. 2005;29(1):92–101.

    Article  PubMed  Google Scholar 

  241. Takubo K, Nakamura K, Sawabe M, Arai T, Esaki Y, Miyashita M, et al. Primary undifferentiated small cell carcinoma of the esophagus. Hum Pathol. 1999;30(2):216–21.

    Article  PubMed  CAS  Google Scholar 

  242. Cary NR, Barron DJ, McGoldrick JP, Wells FC. Combined oesophageal adenocarcinoma and carcinoid in Barrett’s oesophagitis: potential role of enterochromaffin-like cells in oesophageal malignancy. Thorax. 1993;48(4):404–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Chong FK, Graham JH, Madoff IM. Mucin-producing carcinoid (“composite tumor”) of upper third of esophagus: a variant of carcinoid tumor. Cancer. 1979;44(5):1853–9.

    Article  PubMed  CAS  Google Scholar 

  244. Maru DM, Khurana H, Rashid A, Correa AM, Anandasabapathy S, Krishnan S, et al. Retrospective study of clinicopathologic features and prognosis of high-grade neuroendocrine carcinoma of the esophagus. Am J Surg Pathol. 2008;32(9):1404–11.

    Article  PubMed  Google Scholar 

  245. Siegal A, Swartz A. Malignant carcinoid of oesophagus. Histopathology. 1986;10(7):761–5.

    Article  PubMed  CAS  Google Scholar 

  246. Nawroz IM. Malignant carcinoid tumour of oesophagus. Histopathology. 1987;11(8):879–80.

    Article  PubMed  CAS  Google Scholar 

  247. Kloppel G, Rindi G, Anlauf M, Perren A, Komminoth P. Site-specific biology and pathology of gastroenteropancreatic neuroendocrine tumors. Virchows Arch. 2007;451(Suppl 1):S9–27.

    Article  PubMed  Google Scholar 

  248. Chuah SK, Hu TH, Kuo CM, Chiu KW, Kuo CH, Wu KL, et al. Upper gastrointestinal carcinoid tumors incidentally found by endoscopic examinations. World J Gastroenterol. 2005;11(44):7028–32.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Modlin IM, Sandor A. An analysis of 8305 cases of carcinoid tumors. Cancer. 1997;79(4):813–29.

    Article  PubMed  CAS  Google Scholar 

  250. Yun JP, Zhang MF, Hou JH, Tian QH, Fu J, Liang XM, et al. Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases. BMC Cancer. 2007;7:38.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Lu J, Xue LY, Lu N, Zou SM, Liu XY, Wen P. Superficial primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical analysis of 15 cases. Dis Esophagus. 2010;23(2):153–9.

    Article  PubMed  CAS  Google Scholar 

  252. Travis WD, Linnoila RI, Tsokos MG, Hitchcock CL, Cutler GB Jr, Nieman L, et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol. 1991;15(6):529–53.

    Article  PubMed  CAS  Google Scholar 

  253. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243–60.

    Article  PubMed  Google Scholar 

  254. Briggs JC, Ibrahim NB. Oat cell carcinomas of the oesophagus: a clinico-pathological study of 23 cases. Histopathology. 1983;7(2):261–77.

    Article  PubMed  CAS  Google Scholar 

  255. Ho KJ, Herrera GA, Jones JM, Alexander CB. Small cell carcinoma of the esophagus: evidence for a unified histogenesis. Hum Pathol. 1984;15(5):460–8.

    Article  PubMed  CAS  Google Scholar 

  256. Correa P. A human model of gastric carcinogenesis. Cancer Res. 1988;48(13):3554–60.

    PubMed  CAS  Google Scholar 

  257. Ito H, Hata J, Yokozaki H, Nakatani H, Oda N, Tahara E. Tubular adenoma of the human stomach. An immunohistochemical analysis of gut hormones, serotonin, carcinoembryonic antigen, secretory component, and lysozyme. Cancer. 1986;58(10):2264–72.

    Article  PubMed  CAS  Google Scholar 

  258. Oberhuber G, Stolte M. Gastric polyps: an update of their pathology and biological significance. Virchows Arch. 2000;437(6):581–90.

    Article  PubMed  CAS  Google Scholar 

  259. Domizio P, Talbot IC, Spigelman AD, Williams CB, Phillips RK. Upper gastrointestinal pathology in familial adenomatous polyposis: results from a prospective study of 102 patients. J Clin Pathol. 1990;43(9):738–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Nakamura T, Nakano G. Histopathological classification and malignant change in gastric polyps. J Clin Pathol. 1985;38(7):754–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Abraham SC, Park SJ, Lee JH, Mugartegui L, Wu TT. Genetic alterations in gastric adenomas of intestinal and foveolar phenotypes. Mod Pathol. 2003;16(8):786–95.

    Article  PubMed  Google Scholar 

  262. Ito H, Yasui W, Yoshida K, Nakayama H, Tahara E. Depressed tubular adenoma of the stomach: pathological and immunohistochemical features. Histopathology. 1990;17(5):419–26.

    Article  PubMed  CAS  Google Scholar 

  263. Lauwers GY, Riddell RH. Gastric epithelial dysplasia. Gut. 1999;45(5):784–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Tosi P, Baak JP, Luzi P, Miracco C, Lio R, Barbini P. Morphometric distinction of low- and high-grade dysplasias in gastric biopsies. Hum Pathol. 1989;20(9):839–44.

    Article  PubMed  CAS  Google Scholar 

  265. Lansdown M, Quirke P, Dixon MF, Axon AT, Johnston D. High grade dysplasia of the gastric mucosa: a marker for gastric carcinoma. Gut. 1990;31(9):977–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Vieth M, Kushima R, Borchard F, Stolte M. Pyloric gland adenoma: a clinico-pathological analysis of 90 cases. Virchows Arch. 2003;442(4):317–21.

    Article  PubMed  CAS  Google Scholar 

  267. Chen ZM, Scudiere JR, Abraham SC, Montgomery E. Pyloric gland adenoma: an entity distinct from gastric foveolar type adenoma. Am J Surg Pathol. 2009;33(2):186–93.

    Article  PubMed  Google Scholar 

  268. Stewart BW, Wild CP. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.

    Google Scholar 

  269. Locke GR 3rd, Talley NJ, Carpenter HA, Harmsen WS, Zinsmeister AR, Melton LJ 3rd. Changes in the site- and histology-specific incidence of gastric cancer during a 50-year period. Gastroenterology. 1995;109(6):1750–6.

    Article  PubMed  Google Scholar 

  270. Kuipers EJ. Helicobacter pylori and the risk and management of associated diseases: gastritis, ulcer disease, atrophic gastritis and gastric cancer. Aliment Pharmacol Ther. 1997;11(Suppl 1):71–88.

    Article  PubMed  Google Scholar 

  271. Henson DE, Dittus C, Younes M, Nguyen H, Albores-Saavedra J. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type. Arch Pathol Lab Med. 2004;128(7):765–70.

    Article  PubMed  Google Scholar 

  272. Cameron AJ, Lomboy CT, Pera M, Carpenter HA. Adenocarcinoma of the esophagogastric junction and Barrett’s esophagus. Gastroenterology. 1995;109(5):1541–6.

    Article  PubMed  CAS  Google Scholar 

  273. Wijnhoven BP, Siersema PD, Hop WC, van Dekken H, Tilanus HW. Adenocarcinomas of the distal oesophagus and gastric cardia are one clinical entity. Rotterdam Oesophageal Tumour Study Group. Br J Surg. 1999;86(4):529–35.

    Article  PubMed  CAS  Google Scholar 

  274. Siewert JR, Stein HJ. Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg. 1998;85(11):1457–9.

    Article  PubMed  CAS  Google Scholar 

  275. Allum WH, Powell DJ, McConkey CC, Fielding JW. Gastric cancer: a 25-year review. Br J Surg. 1989;76(6):535–40.

    Article  PubMed  CAS  Google Scholar 

  276. Capella C, Frigerio B, Cornaggia M, Solcia E, Pinzon-Trujillo Y, Chejfec G. Gastric parietal cell carcinoma--a newly recognized entity: light microscopic and ultrastructural features. Histopathology. 1984;8(5):813–24.

    Article  PubMed  CAS  Google Scholar 

  277. Bonar SF, Sweeney EC. The prevalence, prognostic significance and hormonal content of endocrine cells in gastric cancer. Histopathology. 1986;10(1):53–63.

    Article  PubMed  CAS  Google Scholar 

  278. Ueyama H, Yao T, Nakashima Y, Hirakawa K, Oshiro Y, Hirahashi M, et al. Gastric adenocarcinoma of fundic gland type (chief cell predominant type): proposal for a new entity of gastric adenocarcinoma. Am J Surg Pathol. 2010;34(5):609–19.

    Article  PubMed  Google Scholar 

  279. Singhi AD, Lazenby AJ, Montgomery EA. Gastric adenocarcinoma with chief cell differentiation: a proposal for reclassification as oxyntic gland polyp/adenoma. Am J Surg Pathol. 2012;36(7):1030–5.

    Article  PubMed  Google Scholar 

  280. Ooi A, Nakanishi I, Itoh T, Ueda H, Mai M. Predominant Paneth cell differentiation in an intestinal type gastric cancer. Pathol Res Pract. 1991;187(2–3):220–5.

    Article  PubMed  CAS  Google Scholar 

  281. Fiocca R, Villani L, Tenti P, Solcia E, Cornaggia M, Frigerio B, et al. Characterization of four main cell types in gastric cancer: foveolar, mucopeptic, intestinal columnar and goblet cells. An histopathologic, histochemical and ultrastructural study of “early” and “advanced” tumours. Pathol Res Pract. 1987;182(3):308–25.

    Article  PubMed  CAS  Google Scholar 

  282. Setala LP, Kosma VM, Marin S, Lipponen PK, Eskelinen MJ, Syrjanen KJ, et al. Prognostic factors in gastric cancer: the value of vascular invasion, mitotic rate and lymphoplasmacytic infiltration. Br J Cancer. 1996;74(5):766–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Tanaka A, Watanabe T, Okuno K, Yasutomi M. Perineural invasion as a predictor of recurrence of gastric cancer. Cancer. 1994;73(3):550–5.

    Article  PubMed  CAS  Google Scholar 

  284. Ming SC. Gastric carcinoma. A pathobiological classification. Cancer. 1977;39(6):2475–85.

    Article  PubMed  CAS  Google Scholar 

  285. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    Article  PubMed  CAS  Google Scholar 

  286. Roy P, Piard F, Dusserre-Guion L, Martin L, Michiels-Marzais D, Faivre J. Prognostic comparison of the pathological classifications of gastric cancer: a population-based study. Histopathology. 1998;33(4):304–10.

    Article  PubMed  CAS  Google Scholar 

  287. Berlth F, Bollschweiler E, Drebber U, Hoelscher AH, Moenig S. Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. World J Gastroenterol. 2014;20(19):5679–84.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Mori M, Sakaguchi H, Akazawa K, Tsuneyoshi M, Sueishi K, Sugimachi K. Correlation between metastatic site, histological type, and serum tumor markers of gastric carcinoma. Hum Pathol. 1995;26(5):504–8.

    Article  PubMed  CAS  Google Scholar 

  289. Carneiro F, Huntsman DG, Smyrk TC, Owen DA, Seruca R, Pharoah P, et al. Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. J Pathol. 2004;203(2):681–7.

    Article  PubMed  CAS  Google Scholar 

  290. Fiocca R, Villani L, Tenti P, Cornaggia M, Finzi G, Riva C, et al. The foveolar cell component of gastric cancer. Hum Pathol. 1990;21(3):260–70.

    Article  PubMed  CAS  Google Scholar 

  291. Machado JC, Nogueira AM, Carneiro F, Reis CA, Sobrinho-Simoes M. Gastric carcinoma exhibits distinct types of cell differentiation: an immunohistochemical study of trefoil peptides (TFF1 and TFF2) and mucins (MUC1, MUC2, MUC5AC, and MUC6). J Pathol. 2000;190(4):437–43.

    Article  PubMed  CAS  Google Scholar 

  292. Oda K, Tamaru J, Takenouchi T, Mikata A, Nunomura M, Saitoh N, et al. Association of Epstein-Barr virus with gastric carcinoma with lymphoid stroma. Am J Pathol. 1993;143(4):1063–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  293. Matsunou H, Konishi F, Hori H, Ikeda T, Sasaki K, Hirose Y, et al. Characteristics of Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma in Japan. Cancer. 1996;77(10):1998–2004.

    Article  PubMed  CAS  Google Scholar 

  294. Minamoto T, Mai M, Watanabe K, Ooi A, Kitamura T, Takahashi Y, et al. Medullary carcinoma with lymphocytic infiltration of the stomach. Clinicopathologic study of 27 cases and immunohistochemical analysis of the subpopulations of infiltrating lymphocytes in the tumor. Cancer. 1990;66(5):945–52.

    Article  PubMed  CAS  Google Scholar 

  295. Nakamura S, Ueki T, Yao T, Ueyama T, Tsuneyoshi M. Epstein-Barr virus in gastric carcinoma with lymphoid stroma. Special reference to its detection by the polymerase chain reaction and in situ hybridization in 99 tumors, including a morphologic analysis. Cancer. 1994;73(9):2239–49.

    Article  PubMed  CAS  Google Scholar 

  296. dos Santos NR, Seruca R, Constancia M, Seixas M, Sobrinho-Simoes M. Microsatellite instability at multiple loci in gastric carcinoma: clinicopathologic implications and prognosis. Gastroenterology. 1996;110(1):38–44.

    Article  PubMed  Google Scholar 

  297. Hisamichi S. Screening for gastric cancer. World J Surg. 1989;13(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  298. Marubashi S, Yano H, Monden T, Tateishi H, Kanoh T, Iwazawa T, et al. Primary squamous cell carcinoma of the stomach. Gastric Cancer. 1999;2(2):136–41.

    Article  PubMed  Google Scholar 

  299. Mori M, Iwashita A, Enjoji M. Adenosquamous carcinoma of the stomach. A clinicopathologic analysis of 28 cases. Cancer. 1986;57(2):333–9.

    Article  PubMed  CAS  Google Scholar 

  300. Yoshida K, Manabe T, Tsunoda T, Kimoto M, Tadaoka Y, Shimizu M. Early gastric cancer of adenosquamous carcinoma type: report of a case and review of literature. Jpn J Clin Oncol. 1996;26(4):252–7.

    Article  PubMed  CAS  Google Scholar 

  301. Robey-Cafferty SS, Grignon DJ, Ro JY, Cleary KR, Ayala AG, Ordonez NG, et al. Sarcomatoid carcinoma of the stomach. A report of three cases with immunohistochemical and ultrastructural observations. Cancer. 1990;65(7):1601–6.

    Article  PubMed  CAS  Google Scholar 

  302. Randjelovic T, Filipovic B, Babic D, Cemerikic V, Filipovic B. Carcinosarcoma of the stomach: a case report and review of the literature. World J Gastroenterol. 2007;13(41):5533–6.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Ikeda Y, Kosugi S, Nishikura K, Ohashi M, Kanda T, Kobayashi T, et al. Gastric carcinosarcoma presenting as a huge epigastric mass. Gastric Cancer. 2007;10(1):63–8.

    Article  PubMed  Google Scholar 

  304. Dundas SA, Slater DN, Wagner BE, Mills PA. Gastric adenocarcinoleiomyosarcoma: a light, electron microscopic and immunohistological study. Histopathology. 1988;13(3):347–50.

    Article  PubMed  CAS  Google Scholar 

  305. Nakayama Y, Murayama H, Iwasaki H, Iwanaga S, Kikuchi M, Ikeda S, et al. Gastric carcinosarcoma (sarcomatoid carcinoma) with rhabdomyoblastic and osteoblastic differentiation. Pathol Int. 1997;47(8):557–63.

    Article  PubMed  CAS  Google Scholar 

  306. Yamazaki K. A gastric carcinosarcoma with neuroendocrine cell differentiation and undifferentiated spindle-shaped sarcoma component possibly progressing from the conventional tubular adenocarcinoma; an immunohistochemical and ultrastructural study. Virchows Arch. 2003;442(1):77–81.

    Article  PubMed  Google Scholar 

  307. Sato Y, Shimozono T, Kawano S, Toyoda K, Onoe K, Asada Y, et al. Gastric carcinosarcoma, coexistence of adenosquamous carcinoma and rhabdomyosarcoma: a case report. Histopathology. 2001;39(5):543–4.

    Article  PubMed  CAS  Google Scholar 

  308. Kallakury BV, Bui HX, del Rosario A, Wallace J, Solis OG, Ross JS. Primary gastric adenosarcoma. Arch Pathol Lab Med. 1993;117(3):299–301.

    PubMed  CAS  Google Scholar 

  309. Inagawa S, Shimazaki J, Hori M, Yoshimi F, Adachi S, Kawamoto T, et al. Hepatoid adenocarcinoma of the stomach. Gastric Cancer. 2001;4(1):43–52.

    Article  PubMed  CAS  Google Scholar 

  310. Yamazawa S, Ushiku T, Shinozaki-Ushiku A, Hayashi A, Iwasaki A, Abe H, et al. Gastric cancer with primitive enterocyte phenotype: an aggressive subgroup of intestinal-type adenocarcinoma. Am J Surg Pathol. 2017;41(7):989–97.

    Article  PubMed  Google Scholar 

  311. Liu X, Cheng Y, Sheng W, Lu H, Xu X, Xu Y, et al. Analysis of clinicopathologic features and prognostic factors in hepatoid adenocarcinoma of the stomach. Am J Surg Pathol. 2010;34(10):1465–71.

    Article  PubMed  Google Scholar 

  312. Ishikura H, Kirimoto K, Shamoto M, Miyamoto Y, Yamagiwa H, Itoh T, et al. Hepatoid adenocarcinomas of the stomach. An analysis of seven cases. Cancer. 1986;58(1):119–26.

    Article  PubMed  CAS  Google Scholar 

  313. Motoyama T, Aizawa K, Watanabe H, Fukase M, Saito K. Alpha-fetoprotein producing gastric carcinomas: a comparative study of three different subtypes. Acta Pathol Jpn. 1993;43(11):654–61.

    PubMed  CAS  Google Scholar 

  314. Ming SC. Cellular and molecular pathology of gastric carcinoma and precursor lesions: a critical review. Gastric Cancer. 1998;1(1):31–50.

    Article  PubMed  Google Scholar 

  315. Petrella T, Montagnon J, Roignot P, Van Nieuvanhuyse A, Matagrin C, Michiels-Marzais D, et al. Alphafetoprotein-producing gastric adenocarcinoma. Histopathology. 1995;26(2):171–5.

    Article  PubMed  CAS  Google Scholar 

  316. Byrne D, Holley MP, Cuschieri A. Parietal cell carcinoma of the stomach: association with long-term survival after curative resection. Br J Cancer. 1988;58(1):85–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  317. Hayashi I, Muto Y, Fujii Y, Morimatsu M. Mucoepidermoid carcinoma of the stomach. J Surg Oncol. 1987;34(2):94–9.

    Article  PubMed  CAS  Google Scholar 

  318. Amrikachi M, Ro JY, Ordonez NG, Ayala AG. Adenocarcinomas of the gastrointestinal tract with prominent rhabdoid features. Ann Diagn Pathol. 2002;6(6):357–63.

    Article  PubMed  Google Scholar 

  319. Oda, Kondo H, Yamao T, Saito D, Ono H, Gotoda T, et al. Metastatic tumors to the stomach: analysis of 54 patients diagnosed at endoscopy and 347 autopsy cases. Endoscopy. 2001;33(6):507–10.

    Article  PubMed  CAS  Google Scholar 

  320. Kim GH, Ahn JY, Jung HY, Park YS, Kim MJ, Choi KD, et al. Clinical and endoscopic features of metastatic tumors in the stomach. Gut Liver. 2015;9(5):615–22.

    PubMed  Google Scholar 

  321. Yang Y, Lu S, Zeng W, Xie S, Xiao S. GATA3 expression in clinically useful groups of breast carcinoma: a comparison with GCDFP15 and mammaglobin for identifying paired primary and metastatic tumors. Ann Diagn Pathol. 2017;26:1–5.

    Article  PubMed  Google Scholar 

  322. O’Connell FP, Wang HH, Odze RD. Utility of immunohistochemistry in distinguishing primary adenocarcinomas from metastatic breast carcinomas in the gastrointestinal tract. Arch Pathol Lab Med. 2005;129(3):338–47.

    Article  PubMed  Google Scholar 

  323. Lau SK, Weiss LM, Chu PG. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol. 2004;122(1):61–9.

    Article  PubMed  Google Scholar 

  324. Patel DS, Khandeparkar SGS, Joshi AR, Kulkarni MM, Dhande B, Lengare P, et al. Immunohistochemical Study of MUC1, MUC2 and MUC5AC expression in primary breast carcinoma. J Clin Diagn Res. 2017;11(4):EC30–EC4.

    PubMed  PubMed Central  CAS  Google Scholar 

  325. Brito MJ, Williams GT, Thompson H, Filipe MI. Expression of p53 in early (T1) gastric carcinoma and precancerous adjacent mucosa. Gut. 1994;35(12):1697–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  326. Milne AN, Carvalho R, Morsink FM, Musler AR, de Leng WW, Ristimaki A, et al. Early-onset gastric cancers have a different molecular expression profile than conventional gastric cancers. Mod Pathol. 2006;19(4):564–72.

    Article  PubMed  CAS  Google Scholar 

  327. Lee JH, Abraham SC, Kim HS, Nam JH, Choi C, Lee MC, et al. Inverse relationship between APC gene mutation in gastric adenomas and development of adenocarcinoma. Am J Pathol. 2002;161(2):611–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  328. Park K, Kim SJ, Bang YJ, Park JG, Kim NK, Roberts AB, et al. Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci U S A. 1994;91(19):8772–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  329. Hara T, Ooi A, Kobayashi M, Mai M, Yanagihara K, Nakanishi I. Amplification of c-myc, K-sam, and c-met in gastric cancers: detection by fluorescence in situ hybridization. Lab Investig. 1998;78(9):1143–53.

    PubMed  CAS  Google Scholar 

  330. Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M, et al. A novel germ line juxtamembrane met mutation in human gastric cancer. Oncogene. 2000;19(43):4947–53.

    Article  PubMed  CAS  Google Scholar 

  331. Boku N. HER2-positive gastric cancer. Gastric Cancer. 2014;17(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  332. Jardim DL, de Melo GD, Falchook GS, Janku F, Zinner R, Wheler JJ, et al. MET aberrations and c-MET inhibitors in patients with gastric and esophageal cancers in a phase I unit. Oncotarget. 2014;5(7):1837–45.

    Article  PubMed  PubMed Central  Google Scholar 

  333. Metzger ML, Behrens HM, Boger C, Haag J, Kruger S, Rocken C. MET in gastric cancer--discarding a 10% cutoff rule. Histopathology. 2016;68(2):241–53.

    Article  PubMed  Google Scholar 

  334. Ha SY, Lee J, Kang SY, Do IG, Ahn S, Park JO, et al. MET overexpression assessed by new interpretation method predicts gene amplification and poor survival in advanced gastric carcinomas. Mod Pathol. 2013;26(12):1632–41.

    Article  PubMed  CAS  Google Scholar 

  335. Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107(2):325–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Yildiz Y, Sokmensuer C, Yalcin S. Evaluation of c-Met, HGF, and HER-2 expressions in gastric carcinoma and their association with other clinicopathological factors. Onco Targets Ther. 2016;9:5809–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Wu MS, Lee CW, Shun CT, Wang HP, Lee WJ, Chang MC, et al. Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes. Genes Chromosomes Cancer. 2000;27(4):403–11.

    Article  PubMed  CAS  Google Scholar 

  338. Chung DC, Yoon SS, Lauwers GY, Patel D. Case records of the Massachusetts General Hospital. Case 22-2007. A woman with a family history of gastric and breast cancer. N Engl J Med. 2007;357(3):283–91.

    Article  PubMed  CAS  Google Scholar 

  339. Pedrazzani C, Corso G, Marrelli D, Roviello F. E-cadherin and hereditary diffuse gastric cancer. Surgery. 2007;142(5):645–57.

    Article  PubMed  Google Scholar 

  340. Caldas C, Carneiro F, Lynch HT, Yokota J, Wiesner GL, Powell SM, et al. Familial gastric cancer: overview and guidelines for management. J Med Genet. 1999;36(12):873–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  341. Blair V, Martin I, Shaw D, Winship I, Kerr D, Arnold J, et al. Hereditary diffuse gastric cancer: diagnosis and management. Clin Gastroenterol Hepatol. 2006;4(3):262–75.

    Article  PubMed  CAS  Google Scholar 

  342. Keller G, Vogelsang H, Becker I, Hutter J, Ott K, Candidus S, et al. Diffuse type gastric and lobular breast carcinoma in a familial gastric cancer patient with an E-cadherin germline mutation. Am J Pathol. 1999;155(2):337–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Huntsman DG, Carneiro F, Lewis FR, MacLeod PM, Hayashi A, Monaghan KG, et al. Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N Engl J Med. 2001;344(25):1904–9.

    Article  PubMed  CAS  Google Scholar 

  344. Rogers WM, Dobo E, Norton JA, Van Dam J, Jeffrey RB, Huntsman DG, et al. Risk-reducing total gastrectomy for germline mutations in E-cadherin (CDH1): pathologic findings with clinical implications. Am J Surg Pathol. 2008;32(6):799–809.

    Article  PubMed  Google Scholar 

  345. Aarnio M, Salovaara R, Aaltonen LA, Mecklin JP, Jarvinen HJ. Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome. Int J Cancer. 1997;74(5):551–5.

    Article  PubMed  CAS  Google Scholar 

  346. Abraham SC, Nobukawa B, Giardiello FM, Hamilton SR, Wu TT. Fundic gland polyps in familial adenomatous polyposis: neoplasms with frequent somatic adenomatous polyposis coli gene alterations. Am J Pathol. 2000;157(3):747–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  347. Hofgartner WT, Thorp M, Ramus MW, Delorefice G, Chey WY, Ryan CK, et al. Gastric adenocarcinoma associated with fundic gland polyps in a patient with attenuated familial adenomatous polyposis. Am J Gastroenterol. 1999;94(8):2275–81.

    Article  PubMed  CAS  Google Scholar 

  348. Zwick A, Munir M, Ryan CK, Gian J, Burt RW, Leppert M, et al. Gastric adenocarcinoma and dysplasia in fundic gland polyps of a patient with attenuated adenomatous polyposis coli. Gastroenterology. 1997;113(2):659–63.

    Article  PubMed  CAS  Google Scholar 

  349. Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

    Article  CAS  Google Scholar 

  350. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449–56.

    Article  PubMed  CAS  Google Scholar 

  351. Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology. 2013;145(3):554–65.

    Article  PubMed  CAS  Google Scholar 

  352. Setia N, Agoston AT, Han HS, Mullen JT, Duda DG, Clark JW, et al. A protein and mRNA expression-based classification of gastric cancer. Mod Pathol. 2016;29(7):772–84.

    Article  PubMed  CAS  Google Scholar 

  353. Liu Z, Mira JL, Cruz-Caudillo JC. Primary gastric choriocarcinoma: a case report and review of the literature. Arch Pathol Lab Med. 2001;125(12):1601–4.

    Article  PubMed  CAS  Google Scholar 

  354. Imai Y, Kawabe T, Takahashi M, Matsumura M, Komatsu Y, Hamada E, et al. A case of primary gastric choriocarcinoma and a review of the Japanese literature. J Gastroenterol. 1994;29(5):642–6.

    Article  PubMed  CAS  Google Scholar 

  355. Namikawa T, Kobayashi M, Okabayashi T, Ozaki S, Nakamura S, Yamashita K, et al. Primary gastric small cell carcinoma: report of a case and review of the literature. Med Mol Morphol. 2005;38(4):256–61.

    Article  PubMed  Google Scholar 

  356. Matsui K, Jin XM, Kitagawa M, Miwa A. Clinicopathologic features of neuroendocrine carcinomas of the stomach: appraisal of small cell and large cell variants. Arch Pathol Lab Med. 1998;122(11):1010–7.

    PubMed  CAS  Google Scholar 

  357. Kusayanagi S, Konishi K, Miyasaka N, Sasaki K, Kurahashi T, Kaneko K, et al. Primary small cell carcinoma of the stomach. J Gastroenterol Hepatol. 2003;18(6):743–7.

    Article  PubMed  Google Scholar 

  358. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology. 2005;128(6):1717–51.

    Article  PubMed  Google Scholar 

  359. Laine L, Ahnen D, McClain C, Solcia E, Walsh JH. Review article: potential gastrointestinal effects of long-term acid suppression with proton pump inhibitors. Aliment Pharmacol Ther. 2000;14(6):651–68.

    Article  PubMed  CAS  Google Scholar 

  360. La Rosa S, Inzani F, Vanoli A, Klersy C, Dainese L, Rindi G, et al. Histologic characterization and improved prognostic evaluation of 209 gastric neuroendocrine neoplasms. Hum Pathol. 2011;42(10):1373–84.

    Article  PubMed  CAS  Google Scholar 

  361. Rindi G, Bordi C, Rappel S, La Rosa S, Stolte M, Solcia E. Gastric carcinoids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. World J Surg. 1996;20(2):168–72.

    Article  PubMed  CAS  Google Scholar 

  362. Thomas RM, Baybick JH, Elsayed AM, Sobin LH. Gastric carcinoids. An immunohistochemical and clinicopathologic study of 104 patients. Cancer. 1994;73(8):2053–8.

    Article  PubMed  CAS  Google Scholar 

  363. Borch K, Renvall H, Kullman E, Wilander E. Gastric carcinoid associated with the syndrome of hypergastrinemic atrophic gastritis. A prospective analysis of 11 cases. Am J Surg Pathol. 1987;11(6):435–44.

    Article  PubMed  CAS  Google Scholar 

  364. Solcia E, Capella C, Fiocca R, Rindi G, Rosai J. Gastric argyrophil carcinoidosis in patients with Zollinger-Ellison syndrome due to type 1 multiple endocrine neoplasia. A newly recognized association. Am J Surg Pathol. 1990;14(6):503–13.

    Article  PubMed  CAS  Google Scholar 

  365. Ooi A, Ota M, Katsuda S, Nakanishi I, Sugawara H, Takahashi I. An unusual case of multiple gastric carcinoids associated with diffuse endocrine cell hyperplasia and parietal cell hypertrophy. Endocr Pathol. 1995;6(3):229–37.

    Article  PubMed  Google Scholar 

  366. Rindi G, Azzoni C, La Rosa S, Klersy C, Paolotti D, Rappel S, et al. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: prognostic evaluation by pathological analysis. Gastroenterology. 1999;116(3):532–42.

    Article  PubMed  CAS  Google Scholar 

  367. Carney JA, Go VL, Fairbanks VF, Moore SB, Alport EC, Nora FE. The syndrome of gastric argyrophil carcinoid tumors and nonantral gastric atrophy. Ann Intern Med. 1983;99(6):761–6.

    Article  PubMed  CAS  Google Scholar 

  368. Muller J, Kirchner T, Muller-Hermelink HK. Gastric endocrine cell hyperplasia and carcinoid tumors in atrophic gastritis type A. Am J Surg Pathol. 1987;11(12):909–17.

    Article  PubMed  CAS  Google Scholar 

  369. Pandol SJ. The exocrine pancreas. Colloquium series on integrated systems physiology: from molecule to function to disease. San Rafael: Morgan & Claypool Life Sciences; 2010.

    Google Scholar 

  370. Stelow EB, Adams RB, Moskaluk CA. The prevalence of pancreatic intraepithelial neoplasia in pancreata with uncommon types of primary neoplasms. Am J Surg Pathol. 2006;30(1):36–41.

    Article  PubMed  Google Scholar 

  371. Brockie E, Anand A, Albores-Saavedra J. Progression of atypical ductal hyperplasia/carcinoma in situ of the pancreas to invasive adenocarcinoma. Ann Diagn Pathol. 1998;2(5):286–92.

    Article  PubMed  CAS  Google Scholar 

  372. Brat DJ, Lillemoe KD, Yeo CJ, Warfield PB, Hruban RH. Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas. Am J Surg Pathol. 1998;22(2):163–9.

    Article  PubMed  CAS  Google Scholar 

  373. Basturk O, Hong SM, Wood LD, Adsay NV, Albores-Saavedra J, Biankin AV, et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol. 2015;39(12):1730–41.

    Article  PubMed  PubMed Central  Google Scholar 

  374. Hruban RH, Takaori K, Klimstra DS, Adsay NV, Albores-Saavedra J, Biankin AV, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2004;28(8):977–87.

    Article  PubMed  Google Scholar 

  375. Chen J, Baithun SI. Morphological study of 391 cases of exocrine pancreatic tumours with special reference to the classification of exocrine pancreatic carcinoma. J Pathol. 1985;146(1):17–29.

    Article  PubMed  CAS  Google Scholar 

  376. Adsay V, Logani S, Sarkar F, Crissman J, Vaitkevicius V. Foamy gland pattern of pancreatic ductal adenocarcinoma: a deceptively benign-appearing variant. Am J Surg Pathol. 2000;24(4):493–504.

    Article  PubMed  CAS  Google Scholar 

  377. Bagci P, Andea AA, Basturk O, Jang KT, Erbarut I, Adsay V. Large duct type invasive adenocarcinoma of the pancreas with microcystic and papillary patterns: a potential microscopic mimic of non-invasive ductal neoplasia. Mod Pathol. 2012;25(3):439–48.

    Article  PubMed  Google Scholar 

  378. Dursun N, Feng J, Basturk O, Bandyopadhyay S, Cheng JD, Adsay VN. Vacuolated cell pattern of pancreatobiliary adenocarcinoma: a clinicopathological analysis of 24 cases of a poorly recognized distinctive morphologic variant important in the differential diagnosis. Virchows Arch. 2010;457(6):643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  379. Zerbi A, De Nardi P, Braga M, Radice F, Sironi M, Di Carlo V. An oncocytic carcinoma of the pancreas with pulmonary and subcutaneous metastases. Pancreas. 1993;8(1):116–9.

    Article  PubMed  CAS  Google Scholar 

  380. Bandyopadhyay S, Basturk O, Coban I, Thirabanjasak D, Liang H, Altinel D, et al. Isolated solitary ducts (naked ducts) in adipose tissue: a specific but underappreciated finding of pancreatic adenocarcinoma and one of the potential reasons of understaging and high recurrence rate. Am J Surg Pathol. 2009;33(3):425–9.

    Article  PubMed  Google Scholar 

  381. Luttges J, Schemm S, Vogel I, Hedderich J, Kremer B, Kloppel G. The grade of pancreatic ductal carcinoma is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation. J Pathol. 2000;191(2):154–61.

    Article  PubMed  CAS  Google Scholar 

  382. Adsay NV, Basturk O, Bonnett M, Kilinc N, Andea AA, Feng J, et al. A proposal for a new and more practical grading scheme for pancreatic ductal adenocarcinoma. Am J Surg Pathol. 2005;29(6):724–33.

    Article  PubMed  Google Scholar 

  383. Giulianotti PC, Boggi U, Fornaciari G, Bruno J, Rossi G, Giardino D, et al. Prognostic value of histological grading in ductal adenocarcinoma of the pancreas. Kloppel vs TNM grading. Int J Pancreatol. 1995;17(3):279–89.

    Article  PubMed  CAS  Google Scholar 

  384. Duval JV, Savas L, Banner BF. Expression of cytokeratins 7 and 20 in carcinomas of the extrahepatic biliary tract, pancreas, and gallbladder. Arch Pathol Lab Med. 2000;124(8):1196–200.

    Article  PubMed  CAS  Google Scholar 

  385. Lee MJ, Lee HS, Kim WH, Choi Y, Yang M. Expression of mucins and cytokeratins in primary carcinomas of the digestive system. Mod Pathol. 2003;16(5):403–10.

    Article  PubMed  Google Scholar 

  386. Luttges J, Zamboni G, Longnecker D, Kloppel G. The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol. 2001;25(7):942–8.

    Article  PubMed  CAS  Google Scholar 

  387. Andrianifahanana M, Moniaux N, Schmied BM, Ringel J, Friess H, Hollingsworth MA, et al. Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin Cancer Res. 2001;7(12):4033–40.

    PubMed  CAS  Google Scholar 

  388. Monges GM, Mathoulin-Portier MP, Acres RB, Houvenaeghel GF, Giovannini MF, Seitz JF, et al. Differential MUC 1 expression in normal and neoplastic human pancreatic tissue. An immunohistochemical study of 60 samples. Am J Clin Pathol. 1999;112(5):635–40.

    Article  PubMed  CAS  Google Scholar 

  389. Moy AP, Arora K, Deshpande V. Albumin expression distinguishes bile duct adenomas from metastatic adenocarcinoma. Histopathology. 2016;69(3):423–30.

    Article  PubMed  Google Scholar 

  390. Wilentz RE, Su GH, Dai JL, Sparks AB, Argani P, Sohn TA, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas : a new marker of DPC4 inactivation. Am J Pathol. 2000;156(1):37–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  391. Tascilar M, Offerhaus GJ, Altink R, Argani P, Sohn TA, Yeo CJ, et al. Immunohistochemical labeling for the Dpc4 gene product is a specific marker for adenocarcinoma in biopsy specimens of the pancreas and bile duct. Am J Clin Pathol. 2001;116(6):831–7.

    Article  PubMed  CAS  Google Scholar 

  392. Adsay NV, Pierson C, Sarkar F, Abrams J, Weaver D, Conlon KC, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol. 2001;25(1):26–42.

    Article  PubMed  CAS  Google Scholar 

  393. Seidel G, Zahurak M, Iacobuzio-Donahue C, Sohn TA, Adsay NV, Yeo CJ, et al. Almost all infiltrating colloid carcinomas of the pancreas and periampullary region arise from in situ papillary neoplasms: a study of 39 cases. Am J Surg Pathol. 2002;26(1):56–63.

    Article  PubMed  Google Scholar 

  394. Kardon DE, Thompson LD, Przygodzki RM, Heffess CS. Adenosquamous carcinoma of the pancreas: a clinicopathologic series of 25 cases. Mod Pathol. 2001;14(5):443–51.

    Article  PubMed  CAS  Google Scholar 

  395. Yamaguchi K, Enjoji M. Adenosquamous carcinoma of the pancreas: a clinicopathologic study. J Surg Oncol. 1991;47(2):109–16.

    Article  PubMed  CAS  Google Scholar 

  396. Hruban RH, Pitman MB, Klimstra DS, American Registry of Pathology, Armed Forces Institute of Pathology (U.S.). Tumors of the pancreas. Washington, D.C.: American Registry of Pathology in collaboration with the Armed Forces Institute of Pathology; 2007. xviii, 422 p.

    Google Scholar 

  397. Paal E, Thompson LD, Frommelt RA, Przygodzki RM, Heffess CS. A clinicopathologic and immunohistochemical study of 35 anaplastic carcinomas of the pancreas with a review of the literature. Ann Diagn Pathol. 2001;5(3):129–40.

    Article  PubMed  CAS  Google Scholar 

  398. Alguacil-Garcia A, Weiland LH. The histologic spectrum, prognosis, and histogenesis of the sarcomatoid carcinoma of the pancreas. Cancer. 1977;39(3):1181–9.

    Article  PubMed  CAS  Google Scholar 

  399. Dhall D, Klimstra DS. The cellular composition of osteoclastlike giant cell-containing tumors of the pancreatobiliary tree. Am J Surg Pathol. 2008;32(2):335–7. author response 7.

    Article  PubMed  Google Scholar 

  400. Dworak O, Wittekind C, Koerfgen HP, Gall FP. Osteoclastic giant cell tumor of the pancreas. An immunohistological study and review of the literature. Pathol Res Pract. 1993;189(2):228–31. discussion 32-4.

    Article  PubMed  CAS  Google Scholar 

  401. Han SS, Jang JY, Kim SW, Kim WH, Lee KU, Park YH. Analysis of long-term survivors after surgical resection for pancreatic cancer. Pancreas. 2006;32(3):271–5.

    Article  PubMed  Google Scholar 

  402. Banville N, Geraghty R, Fox E, Leahy DT, Green A, Keegan D, et al. Medullary carcinoma of the pancreas in a man with hereditary nonpolyposis colorectal cancer due to a mutation of the MSH2 mismatch repair gene. Hum Pathol. 2006;37(11):1498–502.

    Article  PubMed  CAS  Google Scholar 

  403. Wilentz RE, Goggins M, Redston M, Marcus VA, Adsay NV, Sohn TA, et al. Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: a newly described and characterized entity. Am J Pathol. 2000;156(5):1641–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  404. Nakata B, Wang YQ, Yashiro M, Nishioka N, Tanaka H, Ohira M, et al. Prognostic value of microsatellite instability in resectable pancreatic cancer. Clin Cancer Res. 2002;8(8):2536–40.

    PubMed  CAS  Google Scholar 

  405. Hruban RH, Molina JM, Reddy MN, Boitnott JK. A neoplasm with pancreatic and hepatocellular differentiation presenting with subcutaneous fat necrosis. Am J Clin Pathol. 1987;88(5):639–45.

    Article  PubMed  CAS  Google Scholar 

  406. Marchegiani G, Gareer H, Parisi A, Capelli P, Bassi C, Salvia R. Pancreatic hepatoid carcinoma: a review of the literature. Dig Surg. 2013;30(4–6):425–33.

    Article  PubMed  Google Scholar 

  407. Adsay NV, Klimstra DS, Compton CC. Cystic lesions of the pancreas. Introduction. Semin Diagn Pathol. 2000;17(1):1–6.

    PubMed  CAS  Google Scholar 

  408. Albores-Saavedra J, Gould EW, Angeles-Angeles A, Henson DE. Cystic tumors of the pancreas. Pathol Annu. 1990;25(Pt 2):19–50.

    PubMed  Google Scholar 

  409. Adsay NV, Klimstra DS. Cystic forms of typically solid pancreatic tumors. Semin Diagn Pathol. 2000;17(1):81–8.

    PubMed  CAS  Google Scholar 

  410. Compton CC. Serous cystic tumors of the pancreas. Semin Diagn Pathol. 2000;17(1):43–55.

    PubMed  CAS  Google Scholar 

  411. Egawa N, Maillet B, Klöppel G, Schröder S, Mukai K. Serous oligocystic and ill-demarcated adenoma of the pancreas: a variant of serous cystic adenoma. Virchows Arch. 1994;424(1):13–7.

    Article  PubMed  CAS  Google Scholar 

  412. Lewandrowski K, Warshaw A, Compton C. Macrocystic serous cystadenoma of the pancreas: a morphologic variant differing from microcystic adenoma. Hum Pathol. 1992;23(8):871–5.

    Article  PubMed  CAS  Google Scholar 

  413. Tseng JF, Warshaw AL, Sahani DV, Lauwers GY, Rattner DW, Fernandez-del CC. Serous cystadenoma of the pancreas: tumor growth rates and recommendations for treatment. Ann Surg. 2005;242(3):413–9. discussion 9-21.

    Article  PubMed  PubMed Central  Google Scholar 

  414. King JC, Ng TT, White SC, Cortina G, Reber HA, Hines OJ. Pancreatic serous cystadenocarcinoma: a case report and review of the literature. J Gastrointest Surg. 2009;13(10):1864–8.

    Article  PubMed  PubMed Central  Google Scholar 

  415. Bramis K, Petrou A, Papalambros A, Manzelli A, Mantonakis E, Brennan N, et al. Serous cystadenocarcinoma of the pancreas: report of a case and management reflections. World J Surg Oncol. 2012;10:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  416. Girelli R, Bassi C, Falconi M, De Santis L, Bonora A, Caldiron E, et al. Pancreatic cystic manifestations in von Hippel-Lindau disease. Int J Pancreatol. 1997;22(2):101–9.

    Article  PubMed  CAS  Google Scholar 

  417. Hough DM, Stephens DH, Johnson CD, Binkovitz LA. Pancreatic lesions in von Hippel-Lindau disease: prevalence, clinical significance, and CT findings. AJR Am J Roentgenol. 1994;162(5):1091–4.

    Article  PubMed  CAS  Google Scholar 

  418. Panarelli NC, Park KJ, Hruban RH, Klimstra DS. Microcystic serous cystadenoma of the pancreas with subtotal cystic degeneration: another neoplastic mimic of pancreatic pseudocyst. Am J Surg Pathol. 2012;36(5):726–31.

    Article  PubMed  Google Scholar 

  419. Thirabanjasak D, Basturk O, Altinel D, Cheng JD, Adsay NV. Is serous cystadenoma of the pancreas a model of clear-cell-associated angiogenesis and tumorigenesis? Pancreatology. 2009;9(1–2):182–8.

    Article  PubMed  Google Scholar 

  420. Perez-Ordonez B, Naseem A, Lieberman PH, Klimstra DS. Solid serous adenoma of the pancreas. The solid variant of serous cystadenoma? Am J Surg Pathol. 1996;20(11):1401–5.

    Article  PubMed  CAS  Google Scholar 

  421. Kosmahl M, Wagner J, Peters K, Sipos B, Kloppel G. Serous cystic neoplasms of the pancreas: an immunohistochemical analysis revealing alpha-inhibin, neuron-specific enolase, and MUC6 as new markers. Am J Surg Pathol. 2004;28(3):339–46.

    Article  PubMed  Google Scholar 

  422. Yasuhara Y, Sakaida N, Uemura Y, Senzaki H, Shikata N, Tsubura A. Serous microcystic adenoma (glycogen-rich cystadenoma) of the pancreas: study of 11 cases showing clinicopathological and immunohistochemical correlations. Pathol Int. 2002;52(4):307–12.

    Article  PubMed  Google Scholar 

  423. Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108(52):21188–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  424. Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  425. Moore PS, Zamboni G, Brighenti A, Lissandrini D, Antonello D, Capelli P, et al. Molecular characterization of pancreatic serous microcystic adenomas: evidence for a tumor suppressor gene on chromosome 10q. Am J Pathol. 2001;158(1):317–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  426. Thompson LD, Becker RC, Przygodzki RM, Adair CF, Heffess CS. Mucinous cystic neoplasm (mucinous cystadenocarcinoma of low-grade malignant potential) of the pancreas: a clinicopathologic study of 130 cases. Am J Surg Pathol. 1999;23(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  427. Compagno J, Oertel JE. Mucinous cystic neoplasms of the pancreas with overt and latent malignancy (cystadenocarcinoma and cystadenoma). A clinicopathologic study of 41 cases. Am J Clin Pathol. 1978;69(6):573–80.

    Article  PubMed  CAS  Google Scholar 

  428. Wilentz RE, Albores-Saavedra J, Hruban RH. Mucinous cystic neoplasms of the pancreas. Semin Diagn Pathol. 2000;17(1):31–42.

    PubMed  CAS  Google Scholar 

  429. Zamboni G, Scarpa A, Bogina G, Iacono C, Bassi C, Talamini G, et al. Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol. 1999;23(4):410–22.

    Article  PubMed  CAS  Google Scholar 

  430. Izumo A, Yamaguchi K, Eguchi T, Nishiyama K, Yamamoto H, Yonemasu H, et al. Mucinous cystic tumor of the pancreas: immunohistochemical assessment of “ovarian-type stroma”. Oncol Rep. 2003;10(3):515–25.

    PubMed  Google Scholar 

  431. Hara T, Kawashima H, Ishigooka M, Kashiyama M, Takanashi S, Yamazaki S, et al. Mucinous cystic tumors of the pancreas. Surg Today. 2002;32(11):965–9.

    Article  PubMed  Google Scholar 

  432. Ridder GJ, Maschek H, Flemming P, Nashan B, Klempnauer J. Ovarian-like stroma in an invasive mucinous cystadenocarcinoma of the pancreas positive for inhibin. A hint concerning its possible histogenesis. Virchows Arch. 1998;432(5):451–4.

    Article  PubMed  CAS  Google Scholar 

  433. Hirano H, Morita K, Tachibana S, Okimura A, Fujisawa T, Ouchi S, et al. Undifferentiated carcinoma with osteoclast-like giant cells arising in a mucinous cystic neoplasm of the pancreas. Pathol Int. 2008;58(6):383–9.

    Article  PubMed  Google Scholar 

  434. Zamboni G, Terris B, Scarpa A, Kosmahl M, Capelli P, Klimstra DS, et al. Acinar cell cystadenoma of the pancreas: a new entity? Am J Surg Pathol. 2002;26(6):698–704.

    Article  PubMed  Google Scholar 

  435. Luttges J, Feyerabend B, Buchelt T, Pacena M, Kloppel G. The mucin profile of noninvasive and invasive mucinous cystic neoplasms of the pancreas. Am J Surg Pathol. 2002;26(4):466–71.

    Article  PubMed  CAS  Google Scholar 

  436. Yoshizawa K, Nagai H, Sakurai S, Hironaka M, Morinaga S, Saitoh K, et al. Clonality and K-ras mutation analyses of epithelia in intraductal papillary mucinous tumor and mucinous cystic tumor of the pancreas. Virchows Arch. 2002;441(5):437–43.

    Article  PubMed  CAS  Google Scholar 

  437. Jimenez RE, Warshaw AL, Z’Graggen K, Hartwig W, Taylor DZ, Compton CC, et al. Sequential accumulation of K-ras mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy. Ann Surg. 1999;230(4):501–9. discussion 9-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  438. Adsay V, Mino-Kenudson M, Furukawa T, Basturk O, Zamboni G, Marchegiani G, et al. Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of verona consensus meeting. Ann Surg. 2016;263(1):162–77.

    Article  PubMed  Google Scholar 

  439. Matthaei H, Wu J, Dal Molin M, Shi C, Perner S, Kristiansen G, et al. GNAS sequencing identifies IPMN-specific mutations in a subgroup of diminutive pancreatic cysts referred to as “incipient IPMNs”. Am J Surg Pathol. 2014;38(3):360–3.

    Article  PubMed  PubMed Central  Google Scholar 

  440. Adsay NV, Conlon KC, Zee SY, Brennan MF, Klimstra DS. Intraductal papillary-mucinous neoplasms of the pancreas: an analysis of in situ and invasive carcinomas in 28 patients. Cancer. 2002;94(1):62–77.

    Article  PubMed  Google Scholar 

  441. Azar C, Van de Stadt J, Rickaert F, Deviere M, Baize M, Kloppel G, et al. Intraductal papillary mucinous tumours of the pancreas. Clinical and therapeutic issues in 32 patients. Gut. 1996;39(3):457–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  442. Kloppel G. Clinicopathologic view of intraductal papillary-mucinous tumor of the pancreas. Hepato-Gastroenterology. 1998;45(24):1981–5.

    PubMed  CAS  Google Scholar 

  443. Loftus EV Jr, Olivares-Pakzad BA, Batts KP, Adkins MC, Stephens DH, Sarr MG, et al. Intraductal papillary-mucinous tumors of the pancreas: clinicopathologic features, outcome, and nomenclature. Members of the Pancreas Clinic, and Pancreatic Surgeons of Mayo Clinic. Gastroenterology. 1996;110(6):1909–18.

    Article  PubMed  Google Scholar 

  444. Paal E, Thompson LD, Przygodzki RM, Bratthauer GL, Heffess CS. A clinicopathologic and immunohistochemical study of 22 intraductal papillary mucinous neoplasms of the pancreas, with a review of the literature. Mod Pathol. 1999;12(5):518–28.

    PubMed  CAS  Google Scholar 

  445. Furukawa T, Kloppel G, Volkan Adsay N, Albores-Saavedra J, Fukushima N, Horii A, et al. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch. 2005;447(5):794–9.

    Article  PubMed  Google Scholar 

  446. Adsay NV, Merati K, Andea A, Sarkar F, Hruban RH, Wilentz RE, et al. The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of MUC1 and MUC2 supports the existence of two separate pathways of carcinogenesis. Mod Pathol. 2002;15(10):1087–95.

    Article  PubMed  Google Scholar 

  447. Adsay NV, Longnecker DS, Klimstra DS. Pancreatic tumors with cystic dilatation of the ducts: intraductal papillary mucinous neoplasms and intraductal oncocytic papillary neoplasms. Semin Diagn Pathol. 2000;17(1):16–30.

    PubMed  CAS  Google Scholar 

  448. Nakayama Y, Inoue H, Hamada Y, Takeshita M, Iwasaki H, Maeshiro K, et al. Intraductal tubular adenoma of the pancreas, pyloric gland type: a clinicopathologic and immunohistochemical study of 6 cases. Am J Surg Pathol. 2005;29(5):607–16.

    Article  PubMed  Google Scholar 

  449. Albores-Saavedra J, Sheahan K, O’Riain C, Shukla D. Intraductal tubular adenoma, pyloric type, of the pancreas: additional observations on a new type of pancreatic neoplasm. Am J Surg Pathol. 2004;28(2):233–8.

    Article  PubMed  Google Scholar 

  450. Kato N, Akiyama S, Motoyama T. Pyloric gland-type tubular adenoma superimposed on intraductal papillary mucinous tumor of the pancreas. Pyloric gland adenoma of the pancreas. Virchows Arch. 2002;440(2):205–8.

    Article  PubMed  Google Scholar 

  451. Bakotic BW, Robinson MJ, Sturm PD, Hruban RH, Offerhaus GJ, Albores-Saavedra J. Pyloric gland adenoma of the main pancreatic duct. Am J Surg Pathol. 1999;23(2):227–31.

    Article  PubMed  CAS  Google Scholar 

  452. Adsay NV, Merati K, Basturk O, Iacobuzio-Donahue C, Levi E, Cheng JD, et al. Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. Am J Surg Pathol. 2004;28(7):839–48.

    Article  PubMed  Google Scholar 

  453. Ishida M, Egawa S, Aoki T, Sakata N, Mikami Y, Motoi F, et al. Characteristic clinicopathological features of the types of intraductal papillary-mucinous neoplasms of the pancreas. Pancreas. 2007;35(4):348–52.

    Article  PubMed  Google Scholar 

  454. Basturk O, Tan M, Bhanot U, Allen P, Adsay V, Scott SN, et al. The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes. Mod Pathol. 2016;29(9):1058–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  455. Schaberg KB, DiMaio MA, Longacre TA. Intraductal papillary mucinous neoplasms often contain epithelium from multiple subtypes and/or are unclassifiable. Am J Surg Pathol. 2016;40(1):44–50.

    Article  PubMed  Google Scholar 

  456. Tanaka M, Fernandez-del Castillo C, Adsay V, Chari S, Falconi M, Jang JY, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12(3):183–97.

    Article  PubMed  Google Scholar 

  457. Terada T, Ohta T, Kitamura Y, Ashida K, Matsunaga Y. Cell proliferative activity in intraductal papillary-mucinous neoplasms and invasive ductal adenocarcinomas of the pancreas: an immunohistochemical study. Arch Pathol Lab Med. 1998;122(1):42–6.

    PubMed  CAS  Google Scholar 

  458. Nagai E, Ueki T, Chijiiwa K, Tanaka M, Tsuneyoshi M. Intraductal papillary mucinous neoplasms of the pancreas associated with so-called “mucinous ductal ectasia”. Histochemical and immunohistochemical analysis of 29 cases. Am J Surg Pathol. 1995;19(5):576–89.

    Article  PubMed  CAS  Google Scholar 

  459. Basturk O, Khayyata S, Klimstra DS, Hruban RH, Zamboni G, Coban I, et al. Preferential expression of MUC6 in oncocytic and pancreatobiliary types of intraductal papillary neoplasms highlights a pyloropancreatic pathway, distinct from the intestinal pathway, in pancreatic carcinogenesis. Am J Surg Pathol. 2010;34(3):364–70.

    Article  PubMed  PubMed Central  Google Scholar 

  460. Lee JH, Kim Y,