Skip to main content

Photovoltaic Solar Cells: Materials, Concepts and Devices

  • Chapter
  • First Online:
Next Generation Multilayer Graded Bandgap Solar Cells

Abstract

This chapter describes the characteristic structural and electrical properties of solid-state materials with emphasis on semiconductors, surfaces and interfaces, junctions, charge carrier transport mechanisms, electrical contacts and devices. An overview of semiconductor growth techniques is also included in this chapter for readers to familiarise with some of the terminologies that describe semiconductor/semiconductor (SS), metal/semiconductor (MS) or metal/insulator/semiconductor (MIS) structures. This chapter also includes a description of the concept of bandgap grading and next-generation solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, Cambridge, 2003). https://doi.org/10.1017/CBO9780511805745

    Book  Google Scholar 

  2. I.A. Sukhoivanov, I.V. Guryev, Photonic Crystals (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-642-02646-1

    Book  Google Scholar 

  3. D. Neamen, Semiconductor physics and devices. Mater. Today. 9, 57 (2006). https://doi.org/10.1016/S1369-7021(06)71498-5

    Article  Google Scholar 

  4. I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)

    Google Scholar 

  5. W.H. Strehlow, E.L. Cook, Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data. 2, 163–200 (1973). https://doi.org/10.1063/1.3253115

    Article  Google Scholar 

  6. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006). https://doi.org/10.1002/0470068329

    Book  Google Scholar 

  7. A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy. 136, 10–14 (2016). https://doi.org/10.1016/j.solener.2016.06.067

    Article  Google Scholar 

  8. S.D. Sathaye, A.P.B. Sinha, Studies on thin films of cadmium sulphide prepared by a chemical deposition method. Thin Solid Films 37, 15–23 (1976). https://doi.org/10.1016/0040-6090(76)90531-9

    Article  Google Scholar 

  9. I.M. Dharmadasa, J.M. Thornton, R.H. Williams, Effects of surface treatments on Schottky barrier formation at metal/n-type CdTe contacts. Appl. Phys. Lett. 54, 137 (1989). https://doi.org/10.1063/1.101208

    Article  Google Scholar 

  10. I.M. Dharmadasa, J.D. Bunning, A.P. Samantilleke, T. Shen, Effects of multi-defects at metal/semiconductor interfaces on electrical properties and their influence on stability and lifetime of thin film solar cells. Sol. Energy Mater. Sol. Cells. 86, 373–384 (2005). https://doi.org/10.1016/j.solmat.2004.08.009

    Article  Google Scholar 

  11. T.L. Chu, S.S. Chu, C. Ferekides, J. Britt, C.Q. Wu, Thin-film junctions of cadmium telluride by metalorganic chemical vapor deposition. J. Appl. Phys. 71, 3870–3876 (1992). https://doi.org/10.1063/1.350852

    Article  Google Scholar 

  12. L. Huang, Y. Zhao, D. Cai, Homojunction and heterojunction based on CdTe polycrystalline thin films. Mater. Lett. 63, 2082–2084 (2009). https://doi.org/10.1016/j.matlet.2009.06.028

    Article  Google Scholar 

  13. B.E. McCandless, J.R. Sites, in Handb. Photovolt. Sci. Eng. Cadmium telluride solar cells (Wiley, Chichester, 2011), pp. 600–641. https://doi.org/10.1002/9780470974704.ch14.

    Chapter  Google Scholar 

  14. M.P. Mikhailova, A.N. Titkov, Type II heterojunctions in the GaInAsSb/GaSb system. Semicond. Sci. Technol. 9, 1279–1295 (1994). https://doi.org/10.1088/0268-1242/9/7/001.

    Article  Google Scholar 

  15. P. Hofmann, Solid State Physics: An Introduction, 2nd edn. (Wiley-VCH, Berlin, 2015)

    MATH  Google Scholar 

  16. P.V. Meyers, Advances in CdTe n-i-p photovoltaics. Sol. Cells. 27, 91–98 (1989). https://doi.org/10.1016/0379-6787(89)90019-7

    Article  Google Scholar 

  17. E.H. Rhoderick, The physics of Schottky barriers? Rev. Phys. Technol. 1, 81–95 (1970). https://doi.org/10.1088/0034-6683/1/2/302

    Article  Google Scholar 

  18. W.G. Oldham, A.G. Milnes, n-n Semiconductor heterojunctions. Solid. State. Electron. 6, 121–132 (1963). https://doi.org/10.1016/0038-1101(63)90005-4

    Article  Google Scholar 

  19. E.H. Rhoderick, Metal-semiconductor contacts. IEE Proc. I Solid State Electron Devices. 129, 1 (1982). https://doi.org/10.1049/ip-i-1.1982.0001

    Article  Google Scholar 

  20. J.P. Ponpon, A review of ohmic and rectifying contacts on cadmium telluride. Solid. State. Electron. 28, 689–706 (1985). https://doi.org/10.1016/0038-1101(85)90019-X

    Article  Google Scholar 

  21. I.M. Dharmadasa, Recent developments and progress on electrical contacts to CdTe, CdS and ZnSe with special reference to barrier contacts to CdTe. Prog. Cryst. Growth Charact. Mater. 36, 249–290 (1998). https://doi.org/10.1016/S0960-8974(98)00010-2

    Article  Google Scholar 

  22. J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717–727 (1947). https://doi.org/10.1103/PhysRev.71.717

    Article  Google Scholar 

  23. J. Singh, Semiconductor Devices: Basic Principles (Wiley, New York, 2001)

    Google Scholar 

  24. W.E. Spicer, I. Lindau, P. Skeath, C.Y. Su, P. Chye, Unified mechanism for Schottky-barrier formation and III-V oxide interface states. Phys. Rev. Lett. 44, 420–423 (1980). https://doi.org/10.1103/PhysRevLett.44.420

    Article  Google Scholar 

  25. R. Schlaf, R. Hinogami, M. Fujitani, S. Yae, Y. Nakato, Fermi level pinning on HF etched silicon surfaces investigated by photoelectron spectroscopy. J. Vac. Sci. Technol. A 17, 164 (1999). https://doi.org/10.1116/1.581568

    Article  Google Scholar 

  26. I.M. Dharmadasa, O. Elsherif, G.J. Tolan, Solar cells active in complete darkness. J. Phys. Conf. Ser. 286, 12041 (2011). https://doi.org/10.1088/1742-6596/286/1/012041

    Article  Google Scholar 

  27. H.J. Queisser, Defects in semiconductors: some fatal, some vital. Science 281, 945–950 (1998). https://doi.org/10.1126/science.281.5379.945

    Article  Google Scholar 

  28. R.B. Godfrey, M.A. Green, Enhancement of MIS solar-cell “efficiency” by peripheral collection. Appl. Phys. Lett. 31, 705–707 (1977). https://doi.org/10.1063/1.89487

    Article  Google Scholar 

  29. W.A. Nevin, G.A. Chamberlain, Effect of oxide thickness on the properties of metal-insulator-organic semiconductor photovoltaic cells. IEEE Trans. Electron Devices. 40, 75–81 (1993). https://doi.org/10.1109/16.249427

    Article  Google Scholar 

  30. M.A. Green, Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 3–13 (2017). https://doi.org/10.1002/pip.2876

    Article  Google Scholar 

  31. V.M. Fthenakis, Life cycle impact analysis of cadmium in CdTe PV production. Renew. Sustain. Energy Rev. 8, 303–334 (2004). https://doi.org/10.1016/j.rser.2003.12.001

    Article  Google Scholar 

  32. B.M. Basol, High-efficiency electroplated heterojunction solar cell. J. Appl. Phys. 55, 601–603 (1984). https://doi.org/10.1063/1.333073

    Article  Google Scholar 

  33. J. Nelson, Polymer:fullerene bulk heterojunction solar cells. Mater. Today. 14, 462–470 (2011). https://doi.org/10.1016/S1369-7021(11)70210-3

    Article  Google Scholar 

  34. J. Nelson, Organic photovoltaic films. Curr. Opin. Solid State Mater. Sci. 6, 87–95 (2002). https://doi.org/10.1016/S1359-0286(02)00006-2

    Article  Google Scholar 

  35. S. Gunes, N.S. Sariciftci, Hybrid solar cells. Inorganica Chim. Acta. 361, 581–588 (2008). https://doi.org/10.1016/j.ica.2007.06.042

    Article  Google Scholar 

  36. M. Wright, A. Uddin, Organic-inorganic hybrid solar cells: a comparative review. Sol. Energy Mater. Sol. Cells. 107, 87–111 (2012). https://doi.org/10.1016/j.solmat.2012.07.006

    Article  Google Scholar 

  37. W. Xu, F. Tan, X. Liu, W. Zhang, S. Qu, Z. Wang, Z. Wang, Efficient organic/inorganic hybrid solar cell integrating polymer nanowires and inorganic nanotetrapods. Nanoscale Res. Lett. 12, 11 (2017). https://doi.org/10.1186/s11671-016-1795-9

    Article  Google Scholar 

  38. P.-L. Ong, I.A. Levitsky, Organic/IV, III-V semiconductor hybrid solar cells. Energies. 3, 313–334 (2010). https://doi.org/10.3390/en3030313

    Article  Google Scholar 

  39. NREL efficiency chart. (n.d.), https://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed 19 June 2017

  40. I.M. Dharmadasa, Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Sol. Energy Mater. Sol. Cells. 85, 293–300 (2005). https://doi.org/10.1016/j.solmat.2004.08.008

    Article  Google Scholar 

  41. O. Ergen, S.M. Gilbert, T. Pham, S.J. Turner, M.T.Z. Tan, M.A. Worsley, A. Zettl, Graded bandgap perovskite solar cells. Nat. Mater. 16, 522–525 (2016). https://doi.org/10.1038/nmat4795

    Article  Google Scholar 

  42. I.M. Dharmadasa, A.A. Ojo, H.I. Salim, R. Dharmadasa, Next generation solar cells based on graded bandgap device structures utilising rod-type nano-materials. Energies. 8, 5440–5458 (2015). https://doi.org/10.3390/en8065440

    Article  Google Scholar 

  43. J. Tauc, Generation of an emf in semiconductors with nonequilibrium current carrier concentrations. Rev. Mod. Phys. 29, 308–324 (1957). https://doi.org/10.1103/RevModPhys.29.308

    Article  Google Scholar 

  44. M. Wolf, Limitations and possibilities for improvement of photovoltaic solar energy converters: part I: considerations for earth’s surface operation. Proc. IRE. 48, 1246–1263 (1960). https://doi.org/10.1109/JRPROC.1960.287647

    Article  Google Scholar 

  45. P.R. Emtage, Electrical conduction and the photovoltaic effect in semiconductors with position-dependent band gaps. J. Appl. Phys. 33, 1950–1960 (1962). https://doi.org/10.1063/1.1728874

    Article  Google Scholar 

  46. M. Konagai, K. Takahashi, Graded-band-gap pGa1-xAlxAs-nGaAs heterojunction solar cells. J. Appl. Phys. 46, 3542–3546 (1975). https://doi.org/10.1063/1.322083

    Article  Google Scholar 

  47. H.J. Hovel, J.M. Woodall, Ga[sub 1−x]Al[sub x]As-GaAs P-P-N heterojunction solar cells. J. Electrochem. Soc. 120, 1246 (1973). https://doi.org/10.1149/1.2403671

    Article  Google Scholar 

  48. I.M. Dharmadasa, A.P. Samantilleke, N.B. Chaure, J. Young, New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model. Semicond. Sci. Technol. 17, 1238–1248 (2002). https://doi.org/10.1088/0268-1242/17/12/306

    Article  Google Scholar 

  49. I. Dharmadasa, J. Roberts, G. Hill, Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: experimental results. Sol. Energy Mater. Sol. Cells. 88, 413–422 (2005). https://doi.org/10.1016/j.solmat.2005.05.008

    Article  Google Scholar 

  50. A.S. Brown, M.A. Green, Impurity photovoltaic effect: fundamental energy conversion efficiency limits. J. Appl. Phys. 92, 1329–1336 (2002). https://doi.org/10.1063/1.1492016

    Article  Google Scholar 

  51. K.W.J. Barnham, G. Duggan, A new approach to high-efficiency multi-band-gap solar cells. J. Appl. Phys. 67, 3490–3493 (1990). https://doi.org/10.1063/1.345339

    Article  Google Scholar 

  52. T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668 (2002)

    Article  Google Scholar 

  53. Y.Y. Lee, W.J. Ho, Y.T. Chen, Performance of plasmonic silicon solar cells using indium nanoparticles deposited on a patterned TiO2 matrix. Thin Solid Films. 570, 194–199 (2014). https://doi.org/10.1016/j.tsf.2014.05.022

    Article  Google Scholar 

  54. Y. Takeda, T. Motohiro, Highly efficient solar cells using hot carriers generated by two-step excitation. Sol. Energy Mater. Sol. Cells. 95, 2638–2644 (2011). https://doi.org/10.1016/j.solmat.2011.05.023

    Article  Google Scholar 

  55. J.F. Geisz, D.J. Friedman, J.S. Ward, A. Duda, W.J. Olavarria, T.E. Moriarty, J.T. Kiehl, M.J. Romero, A.G. Norman, K.M. Jones, 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl. Phys. Lett. 93, 123505 (2008). https://doi.org/10.1063/1.2988497

    Article  Google Scholar 

  56. A.B.F. Martinson, M.S. Góes, F. Fabregat-Santiago, J. Bisquert, M.J. Pellin, J.T. Hupp, Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. J. Phys. Chem. A. 113, 4015–4021 (2009). https://doi.org/10.1021/jp810406q

    Article  Google Scholar 

  57. T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells. Nanotechnology. 19, 295203 (2008). http://stacks.iop.org/0957-4484/19/i=29/a=295203

    Article  Google Scholar 

  58. F.V. Wald, Applications of CdTe. A review. Rev. Phys. Appliquée. 12, 277–290 (1977). https://doi.org/10.1051/rphysap:01977001202027700

    Article  Google Scholar 

  59. R. Frerichs, The photo-conductivity of “incomplete phosphors”. Phys. Rev. 72, 594–601 (1947). https://doi.org/10.1103/PhysRev.72.594

    Article  Google Scholar 

  60. J.J. Loferski, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys. 27, 777–784 (1956). https://doi.org/10.1063/1.1722483

    Article  Google Scholar 

  61. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2010). https://doi.org/10.1002/9780470974704

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojo, A.A., Cranton, W.M., Dharmadasa, I.M. (2019). Photovoltaic Solar Cells: Materials, Concepts and Devices. In: Next Generation Multilayer Graded Bandgap Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-96667-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96667-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96666-3

  • Online ISBN: 978-3-319-96667-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics