Skip to main content

Recognizing Complex Behavior Emerging from Chaos in Cellular Automata

  • 2275 Accesses

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

In this research, we explain and show how a chaotic system displays non-trivial behavior as a complex system. This result is reached modifying the chaotic system using a memory function, which leads to a new system with elements of the original function which are not evident in a first step. We proof that this phenomenology can be apprehended selecting a typical chaotic function in the domain of elementary cellular automata to discover complex dynamics. By numerical simulations, we demonstrate how a number of gliders emerge in this automaton and how some controlled subsystems can be designed within this complex system.

Keywords

  • Complex dynamics
  • Chaos
  • Emergence
  • Gliders
  • Glider guns
  • Memory

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-96661-8_8
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-96661-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    Basins and attractors were calculated with Discrete Dynamical System DDLab available from http://www.ddlab.org/.

References

  1. Adamatzky, A.: Identification of Cellular Automata. Taylor and Francis, London (1994)

    MATH  Google Scholar 

  2. Adamatzky, A. (ed.): Collision-Based Computing. Springer, London (2002)

    MATH  Google Scholar 

  3. Adamatzky, A., Martínez, G.J.: On generative morphological diversity of elementary cellular automata. Kybernetes 39(1), 72–82 (2010)

    MathSciNet  CrossRef  Google Scholar 

  4. Aziz-Alaoui, M., Bertelle, C.: From System Complexity to Emergent Properties. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  5. Bar-Yam, Y.: Dynamics of Complex Systems. Addison-Wesley, New York (1997)

    MATH  Google Scholar 

  6. Boccara, N.: Modeling Complex Systems. Springer, New York (2003)

    MATH  Google Scholar 

  7. Chen, B., Chen, F., Martínez, G.J.: Glider collisions in hybrid cellular automaton with memory rule (43,74). Int. J. Bifurc. Chaos 27(6) (2017). https://doi.org/10.1142/S0218127417500821

  8. Chen, G., Dong, X.: From Chaos to Order. In: World Scientific Series on Nonlinear Science, Series A, vol. 24 (1998)

    Google Scholar 

  9. Culik II, K., Yu, S.: Undecidability of CA classification schemes. Complex Syst. 2(2), 177–190 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  11. Martínez, G.J., Adamatzky, A., Sanz, R.A., Mora, J.C.S.T.: Complex dynamic emerging in rule 30 with majority memory a new approach. Complex Syst. 18(3), 345–365 (2010)

    Google Scholar 

  12. Martínez, G.J., Adamatzky, A., Sanz, R.A.: Designing complex dynamics with memory. Int. J. Bifurc. Chaos 23(10), 1330035–131 (2013)

    CrossRef  Google Scholar 

  13. Martínez, G.J., Adamatzky, A., Chen, B., Chen, F., Mora, J.C.S.T.: Simple networks on complex cellular automata: from de Bruijn diagrams to jump-graphs. In: Zelinka, I., Chen, G. (eds.) Swarm Dynamics as a Complex Network, pp. 241–264. Springer, Heidelberg (2018)

    Google Scholar 

  14. Martínez, G.J.: A note on elementary cellular automata classification. J. Cell. Autom. 8(3–4), 233–259 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Martínez, G.J., Adamatzky, A., Mora, J.C.S.T., Sanz, R.A.: How to make dull cellular automata complex by adding memory: rule 126 case study. Complexity 15(6), 34–49 (2012)

    MathSciNet  Google Scholar 

  16. Martínez, G.J., Adamatzky, A., Sanz, R.A.: Complex dynamics of cellular automata emerging in chaotic rules. J. Nonlinear Syst. Appl. 22(2) (2012). https://doi.org/10.1142/S021812741250023X

  17. McIntosh, H.V.: Wolfram’s class IV and a good life. Physica D 45, 105–121 (1990)

    ADS  MathSciNet  CrossRef  Google Scholar 

  18. McIntosh, H.V.: One Dimensional Cellular Automata. Luniver Press, Bristol (2009)

    Google Scholar 

  19. Mainzer, K., Chua, L.: The Universe as Automaton: From Simplicity and Symmetry to Complexity. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  20. Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  21. Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, New York (2009)

    MATH  Google Scholar 

  22. Martínez, G.J., McIntosh, H.V., Mora, J.C.S.T., Vergara, S.V.C.: Determining a regular language by glider-based structures called phases \({\rm f}_{i}\_{1}\) in rule 110. J. Cell. Autom. 3(3), 231–270 (2008)

    Google Scholar 

  23. Prokopenko, M., Michael Harré, M., Lizier, J.T., Boschetti, F., Peppas, P., Kauffman, S.: Self-referential basis of undecidable dynamics: from The Liar Paradox and The Halting Problem to The Edge of Chaos, CoRR abs/1711.02456 (2017)

    Google Scholar 

  24. Sanz, R.A., Martin, M.: Elementary CA with memory. Complex Syst. 14, 99–126 (2003)

    MATH  Google Scholar 

  25. Sanz, R.A.: Elementary rules with elementary memory rules: the case of linear rules. J. Cell. Autom. 1, 71–87 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Sanz, R.A.: Cellular Automata with Memory. Old City Publishing, Philadelphia (2009)

    MATH  Google Scholar 

  27. Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata. Addison-Wesley Publishing Company, Reading (1992)

    MATH  Google Scholar 

  28. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)

    ADS  MathSciNet  CrossRef  Google Scholar 

  29. Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley Publishing Company, Englewood Cliffs (1994)

    MATH  Google Scholar 

  30. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)

    MATH  Google Scholar 

  31. Wuensche, A.: Classifying cellular automata automatically. Complexity 4(3), 47–66 (1999)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela M. González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

González, G.M., Martínez, G.J., Aziz Alaoui, M.A., Chen, F. (2018). Recognizing Complex Behavior Emerging from Chaos in Cellular Automata. In: Morales, A., Gershenson, C., Braha, D., Minai, A., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems IX. ICCS 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-96661-8_8

Download citation