Skip to main content

Transitivity vs Preferential Attachment: Determining the Driving Force Behind the Evolution of Scientific Co-Authorship Networks

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

We propose a method for the non-parametric joint estimation of preferential attachment and transitivity in complex networks, as opposite to conventional methods that either estimate one mechanism in isolation or jointly estimate both assuming some functional forms. We apply our method to three scientific co-authorship networks between scholars in the complex network field, physicists in high-energy physics, and authors in the Strategic Management Journal. The non-parametric method revealed complex trends of preferential attachment and transitivity that would be unavailable under conventional parametric approaches. In all networks, having one common collaborator with another scientist increases at least five times the chance that one will collaborate with that scientist. Finally, by quantifying the contribution of each mechanism, we found that while transitivity dominates preferential attachment in the high-energy physics network, preferential attachment is the main driving force behind the evolutions of the remaining two networks.

Keywords

  • Preferential attachment
  • Clustering coefficient
  • Rich-get-richer
  • Transitivity
  • Scientific co-authorship networks
  • Collaboration networks

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-96661-8_28
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-96661-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006). http://science.sciencemag.org/content/314/5805/1560

    ADS  CrossRef  Google Scholar 

  2. Dugatkin, L.A.: Cooperation Among Animals: An Evolutionary Perspective. Oxford University Press, Oxford (1997)

    Google Scholar 

  3. Watson, A.: Diplomacy. Routledge, London (1984)

    Google Scholar 

  4. Hamel, G., Doz, Y.L., Prahalad, C.K.: Collaborate with your competitors-and win. Harv. Bus. Rev. 67(1), 133–139 (1989). https://hbr.org/1989/01/collaborate-with-your-competitors-and-win

    Google Scholar 

  5. Johnson, D.W., Johnson, R.T., Smith, K.A.: Active Learning: Cooperation in the College Classroom. Interaction Book Company, Edina (1991)

    Google Scholar 

  6. Larivière, V., Gingras, Y., Sugimoto, C.R., Tsou, A.: Team size matters: collaboration and scientific impact since 1900. J. Assoc. Inf. Sci. Technol. 66(7), 1323–1332. https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.23266

  7. Bornmann, L.: Is collaboration among scientists related to the citation impact of papers because their quality increases with collaboration? An analysis based on data from F1000Prime and normalized citation scores. J. Assoc. Inf. Sci. Technol. 68(4), 1036–1047 (2017). https://doi.org/10.1002/asi.23728

    CrossRef  Google Scholar 

  8. Tahai, A., Meyer, M.J.: A revealed preference study of management journals’ direct influences. Strateg. Manag. J. 20(3), 279–296 (1999). https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0266%28199903%2920%3A3%3C279%3A%3AAID-SMJ33%3E3.0.CO%3B2-2

    CrossRef  Google Scholar 

  9. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107 (2002)

    ADS  CrossRef  Google Scholar 

  10. Newman, M.E.J.: Coauthorship networks and patterns of scientific collaboration. In: Proceedings of the National Academy of Sciences, vol. 101(suppl 1), pp. 5200–5205 (2004). http://www.pnas.org/content/101/suppl_1/5200

  11. Newman, M.E.J.: Scientific collaboration networks. I. network construction and fundamental results. Phys. Rev. E 64, 016131 (2001). https://link.aps.org/doi/10.1103/PhysRevE.64.016131

    ADS  CrossRef  Google Scholar 

  12. Krapivsky, P., Rodgers, G., Redner, S.: Degree distributions of growing networks. Phys. Rev. Lett. 86(23), 5401–5404 (2001)

    ADS  CrossRef  Google Scholar 

  13. Pham, T., Sheridan, P., Shimodaira, H.: PAFit: a statistical method for measuring preferential attachment in temporal complex networks. PLoS ONE 10(9), e0137796 (2015)

    CrossRef  Google Scholar 

  14. Newman, M.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)

    ADS  CrossRef  Google Scholar 

  15. Jeong, H., Néda, Z., Barabási, A.: Measuring preferential attachment in evolving networks. Europhys. Lett. 61(61), 567–572 (2003)

    ADS  CrossRef  Google Scholar 

  16. Ripley, R., Boitmanis, K., Snijders, T.A.: RSiena: Siena - Simulation Investigation for Empirical Network Analysis, R package version 1.1-232 (2013). https://CRAN.R-project.org/package=RSiena

  17. Krivitsky, P.N., Handcock, M.S.: tergm: Fit, Simulate and Diagnose Models for Network Evolution Based on Exponential-Family Random Graph Models. The Statnet Project. R package version 3.4.0 (2016). http://www.statnet.org, http://CRAN.R-project.org/package=tergm

  18. Kong, J., Sarshar, N., Roychowdhury, V.: Experience versus talent shapes the structure of the web. Proc. Nat. Acad. Sci. U.S.A. 37, 105 (2008)

    Google Scholar 

  19. Hunter, D., Lange, K.: Quantile regression via an MM algorithm. J. Comput. Graph. Stat. 9, 60–77 (2000)

    MathSciNet  Google Scholar 

  20. Pham, T., Sheridan, P., Shimodaira, H.: PAFit: an R Package for the Non-parametric Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks. ArXiv e-prints, April 2017

    Google Scholar 

  21. KONECT: arxiv hep-th network dataset. http://konect.uni-koblenz.de/networks/ca-cit-HepTh. Accessed 03 May 2018

  22. Ronda-Pupo, G.A., Pham, T.: The evolutions of the rich get richer and the fit get richer phenomena in scholarly networks: the case of the strategic management journal. Scientometrics, May 2018. https://doi.org/10.1007/s11192-018-2761-3

  23. Zimmermann, F.: High-energy physics strategies and futurelarge-scale projects. Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 355, 4–10 (2015). http://www.sciencedirect.com/science/article/pii/S0168583X1500350X. Proceedings of the 6th International Conference Channeling 2014: Charged & Neutral Particles Channeling Phenomena, 5–10 October 2014, Capri, Italy

    ADS  CrossRef  Google Scholar 

  24. Birnholtz, J.P.: What does it mean to be an author? The intersection of credit, contribution, and collaboration in science. J. Am. Soc. Inf. Sci. Technol. 57(13), 1758–1770. https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20380

  25. Pham, T., Sheridan, P., Shimodaira, H.: Joint estimation of preferential attachment and node fitness in growing complex networks. Sci. Rep. 6 (2016). https://doi.org/10.1038/srep32558

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Inoue, M., Pham, T., Shimodaira, H. (2018). Transitivity vs Preferential Attachment: Determining the Driving Force Behind the Evolution of Scientific Co-Authorship Networks. In: Morales, A., Gershenson, C., Braha, D., Minai, A., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems IX. ICCS 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-96661-8_28

Download citation