Skip to main content

Neural-Inspired Anomaly Detection

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Anomaly detection is an important problem in various fields of complex systems research including image processing, data analysis, physical security and cybersecurity. In image processing, it is used for removing noise while preserving image quality, and in data analysis, physical security and cybersecurity, it is used to find interesting data points, objects or events in a vast sea of information. Anomaly detection will continue to be an important problem in domains intersecting with “Big Data”. In this paper we provide a novel algorithm for anomaly detection that uses phase-coded spiking neurons as basic computational elements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chang, C.I., Chiang, S.S.: Anomaly detection and classification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 40(6), 1314–1325 (2002). https://doi.org/10.1109/TGRS.2002.800280

    Article  ADS  Google Scholar 

  2. Chen, T., Wu, H.R.: Adaptive impulse detection using center-weighted median filters. IEEE Signal Process. Lett. 8(1), 1–3 (2001). https://doi.org/10.1109/97.889633

    Article  ADS  Google Scholar 

  3. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE–13(2), 222–232 (1987). https://doi.org/10.1109/TSE.1987.232894

    Article  Google Scholar 

  4. Dong, Y., Chan, R.H., Xu, S.: A detection statistic for random-valued impulse noise. IEEE Trans. Image Process. 16(4), 1112–1120 (2007). https://doi.org/10.1109/TIP.2006.891348

    Article  ADS  MathSciNet  Google Scholar 

  5. Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005). https://doi.org/10.1109/TIP.2005.857261

    Article  ADS  Google Scholar 

  6. Honda, T., Nayar, S.K.: Finding “anomalies” in an arbitrary image. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, (ICCV), pp. 516–523. IEEE (2001). https://doi.org/10.1109/ICCV.2001.937669

  7. Jolivet, R., Lewis, T.J., Gerstner, W.: Generalized integrate-and-fire-models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol. 92(2), 959–976 (2004). https://doi.org/10.1152/jn.00190.2004

    Article  Google Scholar 

  8. Muthukrishnan, R., Poonkuzhali, G.: A comprehensive survey on outlier detection methods. Am. Eurasian J. Sci. Res. 12(3), 161–171 (2017). https://doi.org/10.5829/idosi.aejsr.2017.161.171

    Article  Google Scholar 

  9. Patcha, A., Park, J.M.: An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput. Netw. 51, 3448–3470 (2007). https://doi.org/10.1016/j.comnet.2007.02.001

    Article  Google Scholar 

  10. Stubbs, J.J., Birch, G.C., Woo, B.L., Kouhestani, C.G.: Physical security assessment with convolutional neural network transfer learning. In: Proceedings of the 2017 International Carnahan Conference on Security Technology (ICCST). IEEE (2017). https://doi.org/10.1109/CCST.2017.8167800

  11. Teng, H.S., Chen, K., Lu, S.C.Y.: Adaptive real-time anomaly detection using inductively generated sequential patterns. In: Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, pp. 278–284. IEEE (1990). https://doi.org/10.1109/RISP.1990.63857

  12. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846. IEEE (1998). https://doi.org/10.1109/ICCV.1998.710815

  13. Verzi, S.J., Rothganger, F., Parekh, O.D., Quach, T.T., Miner, N.E., James, C.D., Aimone, J.B.: Computing with spikes: the advantage of fine-grained timing (Accepted)

    Google Scholar 

  14. Verzi, S.J., Vineyard, C.M., Vugrin, E.D., Galiardi, M., James, C.D., Aimone, J.B.: Optimization-based computation with spiking neurons. In: Proceedings of the IEEE 2017 International Joint Conference on Neural Network (IJCNN), pp. 2015–2022. IEEE(2017). https://doi.org/10.1109/IJCNN.2017.7966098

  15. Woo, B.L., Birch, G.C., Stubbs, J.J., Kouhestani, C.G.: Unmanned aerial system detection and assessment through temporal frequency analysis. In: Proceedings of the 2017 International Carnahan Conference on Security Technology (ICCST). IEEE (2017). https://doi.org/10.1109/CCST.2017.8167832

  16. Yan, M.: Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting. SIAM J. Imaging Sci. 6(3), 1227–1245 (2013). https://doi.org/10.1137/12087178X

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhu, Y., Huang, C.: An improved median filtering algorithm for image noise reduction. Phys. Procedia 25, 609–616 (2012). https://doi.org/10.1016/j.phpro.2012.03.133

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U. S. Department of Energy’s National Nuclear Security Administration under Contract DE-NA0003525. SAND No. 2018-5891 C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Verzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verzi, S.J., Vineyard, C.M., Aimone, J.B. (2018). Neural-Inspired Anomaly Detection. In: Morales, A., Gershenson, C., Braha, D., Minai, A., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems IX. ICCS 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-96661-8_21

Download citation

Publish with us

Policies and ethics