Advertisement

Aortic Endovascular Surgery

  • Michele Conti
  • Simone MorgantiEmail author
  • Alice Finotello
  • Rodrigo M. Romarowski
  • Alessandro Reali
  • Ferdinando Auricchio
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 16)

Abstract

The continuous technological improvements of medical instruments and devices make minimally-invasive approaches a real and valid alternative to standard open surgery in more and more cases. Recent developments in cardiovascular surgery, in particular, have led to the success of thoracic endovascular repair (TEVAR) and transcatheter aortic valve implantation (TAVI). If, on the one hand, minimally-invasive interventions induce shorter hospital stays, faster recovery, and thus reduced costs, on the other hand, since, for obvious reasons, the direct control of the operator on the procedure is much more limited, operation planning and decision-making steps cover a crucial importance. In this context, computational tools have demonstrated to play a remarkable role, providing the surgeon with predictive information regarding the potential optimality of the treatment strategy. In the present chapter, we aim at describing recent developments of TEVAR and TAVI modeling, from both the structural and fluid-dynamic point of view.

Notes

Acknowledgements

MC acknowledges the support of ESC Research Grant 2016 and Prof. S. Demertzis (MD), Dr. E. Ferrari (MD) and Dr. S. Vandenberghe—Cardiocentro Ticino for the activity regarding TAVI embolism.

References

  1. 1.
    Auricchio, F., Conti, M., Morganti, S., et al.: Shape-memory alloys: from constitutive modeling to finite element analysis of stent deployment. Comput. Model Eng. Sci. 57, 225–243 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Auricchio, F., Conti, M., Marconi, S., et al.: Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput. Biol. Med. 43(4), 386–394 (2013)CrossRefGoogle Scholar
  3. 3.
    Auricchio, F., Conti, M., Lefieux, A., et al.: Patient-specific analysis of post-operative aortic hemodynamics: a focus on thoracic endovascular repair (TEVAR). Comput. Mech. 54(4), 943–953 (2014)CrossRefGoogle Scholar
  4. 4.
    Auricchio, F., Conti, M., Morganti, S., et al.: Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed. Eng. 17(12), 1347–1357 (2014)CrossRefGoogle Scholar
  5. 5.
    Capelli, C., Bosi, G.M., Cerri, E., et al.: Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 50(2), 183–192 (2012)CrossRefGoogle Scholar
  6. 6.
    Cribier, A., Eltchaninoff, H., Bash, A., et al.: Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106, 3006–3008 (2002)CrossRefGoogle Scholar
  7. 7.
    De Bock, S., Iannaccone, F., De Santis, G., et al.: Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J. Mech. Behav. Biomed. Mater. 13, 129–139 (2012)CrossRefGoogle Scholar
  8. 8.
    Demanget, N., Avril, S., Badel, P., et al.: Computational comparison of the bending behavior of aortic stent-grafts. J. Mech. Behav. Biomed. Mater. 5(1), 272–282 (2012)CrossRefGoogle Scholar
  9. 9.
    Demanget, N., Latil, P., Orgeas, L., et al.: Severe bending of two aortic stent-grafts: an experimental and numerical mechanical analysis. Ann. Biomed. Eng. 40(12), 2674–2686 (2012)CrossRefGoogle Scholar
  10. 10.
    Demanget, N., Duprey, A., Badel, P., et al.: Finite element analysis of the mechanical performances of 8 marketed aortic stent-grafts. J. Endovasc. Ther. 20(4), 523–535 (2013)CrossRefGoogle Scholar
  11. 11.
    Dwyer, H.A., Matthews, P.B., Azadan, A., et al.: Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9(2), 301–308 (2009)CrossRefGoogle Scholar
  12. 12.
    Erbel, R., Aboyans, V., Boileau, C., et al.: ESC guidelines on the diagnosis and treatment of aortic diseases. Eur. Heart J. 35, 2873–2926 (2014)CrossRefGoogle Scholar
  13. 13.
    Fanning, J.P., Walters, D.L., Platts, D.G., et al.: Characterization of neurological injury in transcatheter aortic valve implantation. Circulation 129(4), 504–515 (2014)CrossRefGoogle Scholar
  14. 14.
    Figueroa, C.A., Taylor, C.A., Chiou, A.J., et al.: Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J. Endovasc. Ther. 16(3), 350–358 (2009)CrossRefGoogle Scholar
  15. 15.
    Gallo, D., Lefieux, A., Morganti, S., et al.: A patient-specific follow up study of the impact of thoracic endovascular repair (TEVAR) on aortic anatomy and on post-operative hemodynamics. Comput. Fluids 141, 54–61 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gessat, M., Hopf, R., Polloket, T., et al.: Image-based mechanical analysis of stent deformation: concept and exemplary implementation for aortic valve stents. IEEE Trans. Biomed. Eng. 61(1), 4–15 (2014)CrossRefGoogle Scholar
  17. 17.
    Gunning, P.S., Vaughan, T.J., McNamara, L.M.: Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation. Ann. Biomed. Eng. 42(9), 1989–2001 (2014)CrossRefGoogle Scholar
  18. 18.
    Kleinstreuer, C., Li, Z., Basciano, C.A., et al.: Computational mechanics of Nitinol stent grafts. J. Biomech. 41(11), 2370–2378 (2008)CrossRefGoogle Scholar
  19. 19.
    Morganti, S., Conti, M., Aiello, M., et al.: Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. J. Biomech. 47(11), 2547–2555 (2014)CrossRefGoogle Scholar
  20. 20.
    Morlacchi, S., Colleoni, S.G., Cardenes, R., et al.: Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35, 1272–1281 (2013)CrossRefGoogle Scholar
  21. 21.
    Mozaffarian, D., Benjamin, E.J., Go, A.S., et al.: Executive summary: heart disease and stroke statistics-2016: update: a report from the American Heart Association. Circulation 133, 447–454 (2016)CrossRefGoogle Scholar
  22. 22.
    Perrin, D., Demanget, N., Badel, P., et al.: Deployment of stent grafts in curved aneurysmal arteries: toward a predictive numerical tool. Int. J. Numer. Methods Biomed. Eng. 31(1), e02698 (2015)CrossRefGoogle Scholar
  23. 23.
    Perrin, D., Badel, P., Orgeas, L., et al.: Patient-specific numerical simulation of stent-graft deployment: validation on three clinical cases. J. Biomech. 48(10), 1868–1875 (2015)CrossRefGoogle Scholar
  24. 24.
    Sirois, E., Wang, Q., Sun, W.: Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root. Cardiovasc. Eng. Technol. 2(3), 186–195 (2011)CrossRefGoogle Scholar
  25. 25.
    Tzamtzis, S., Viquerat, J., Yapet, J., et al.: Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35(1), 125–130 (2013)CrossRefGoogle Scholar
  26. 26.
    Wang, Q., Kodali, S., Primiano, C., et al.: Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech. Model Mechanobiol. 14(1), 29–38 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Michele Conti
    • 1
  • Simone Morganti
    • 2
    Email author
  • Alice Finotello
    • 3
  • Rodrigo M. Romarowski
    • 4
  • Alessandro Reali
    • 1
  • Ferdinando Auricchio
    • 1
  1. 1.Department of Civil Engineering and ArchitectureUniversity of PaviaPaviaItaly
  2. 2.Department of Electrical, Computer, and Biomedical EngineeringUniversity of PaviaPaviaItaly
  3. 3.Department of Experimental MedicineUniversity of GenoaGenoaItaly
  4. 4.3D Simulation LabIRCCS Policlinico San DonatoSan Donato MIItaly

Personalised recommendations