Role of Electrotonic Current in Excitable Cells

  • Emilio MacchiEmail author
  • Ezio Musso
  • Stefano Rossi
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 16)


The aim of the present chapter is to review basic properties of electrotonic current flow in excitable cells, such as neuronal axons and cardiac tissue, during subthreshold stimulation, excitation threshold and impulse conduction. Electrotonic current is proportional to the spatial gradient of the transmembrane potential and consists of a current flow across the membrane with the effect to depolarize it. There is a close interrelationship between electrotonic current that originates from local source-sink interactions and excitation threshold. Successful impulse conduction requires that the amount of active current supplied by the membrane at the source location must be equal to or exceed the amount of electrotonic current required to excite the membrane at the sink location. Such condition is determined by the state of membrane excitability at the source, at the sink and by the degree of electrical coupling between source and sink. Conversely, conduction slowing induced by source-sink mismatch in cardiac tissue may be responsible for unidirectional conduction block and reentry, a condition leading to increased arrhythmia vulnerability, both in normal and pathological tissue. In addition to affecting impulse conduction, electrotonic current flow originating from an activation sequence locally modulates action potential repolarization, determining its duration and spatial dispersion across the tissue. Ultimately, experimental evidence is presented in support of the hypothesis of electrotonic current modulation of ventricular repolarization by two different activation sequences, sinus beat and ventricular test site drive, in normal rat heart.


  1. 1.
    Plonsey, R., Barr, R.C.: Bioelectricity. A Quantitative Approach, 3rd edn. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  2. 2.
    Fozzard, H.A., Schoenberg, M.: Strength-duration curves in cardiac Purkinje fibres: effects of liminal length and charge distribution. J. Physiol. 226, 593–618 (1972)CrossRefGoogle Scholar
  3. 3.
    Weidmann, S.: Electrical constants of trabecular muscle from mammalian heart. J. Physiol. 210, 1041–1054 (1970)CrossRefGoogle Scholar
  4. 4.
    Jack, J.J.B., Noble, D., Tsien, R.W.: Electric Current Flow in Excitable Cells. Clarendon Press, Oxford (1975)Google Scholar
  5. 5.
    Rushton, W.A.H.: Initiation of the propagated disturbance. Proc. R. Soc. B. 124, 210–243 (1937)CrossRefGoogle Scholar
  6. 6.
    Noble, D.: The relation of Rushton’s ‘liminal length’ for excitation to the resting and active conductances of excitable cells. J. Physiol. 226, 573–591 (1972)CrossRefGoogle Scholar
  7. 7.
    Shaw, R.M., Rudy, Y.: Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81, 727–741 (1997)CrossRefGoogle Scholar
  8. 8.
    Hoffman, B.F., Cranefield, P.F.: Electrophysiology of the Heart. McGraw Hill, New York (1960)Google Scholar
  9. 9.
    Cole, K.S., Curtis, H.J.: Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649–670 (1939)CrossRefGoogle Scholar
  10. 10.
    Laurita, K.R., Girouard, S.D., Rudy, Y., Rosenbaum, D.S.: Role of passive electrical properties during action potential restitution in intact heart. Am. J. Phys. 273, H1205–H1214 (1997)Google Scholar
  11. 11.
    Antzelevitch, C.: Modulation of transmural repolarization. Ann. N. Y. Acad. Sci. 1047, 314–323 (2005)CrossRefGoogle Scholar
  12. 12.
    Wan, X., Bryant, S.M., Hart, G.: The effects of [K+]o on regional differences in electrical characteristics of ventricular myocytes in guinea pig. Exp. Physiol. 85, 769–774 (2000)CrossRefGoogle Scholar
  13. 13.
    Banville, I., Gray, R.A.: Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. J. Cardiovasc. Electrophysiol. 13, 1141–1149 (2002)CrossRefGoogle Scholar
  14. 14.
    Chauhan, V.S., Downar, E., Nanthakumar, K., Parker, J.D., Ross, H.J., Chan, W., Picton, P.: Increased ventricular repolarization heterogeneity in patients with ventricular arrhythmia vulnerability and cardiomyopathy: a human in vivo study. Am. J. Physiol. Heart Circ. Physiol. 290, H79–H86 (2006)CrossRefGoogle Scholar
  15. 15.
    Franz, M.R., Bargheer, K., Rafflenbeul, W., Haverich, A., Lichtlen, P.R.: Monophasic action potential mapping in human subjects with normal electrocardiograms: direct evidence for the genesis of the T wave. Circulation. 75, 379–386 (1987)CrossRefGoogle Scholar
  16. 16.
    Hanson, B., Sutton, P., Elameri, N., Gray, M., Critchley, H., Gill, J.S., Taggart, P.: Interaction of activation-repolarization coupling and restitution properties in humans. Circ. Arrhythm. Electrophysiol. 2, 162–170 (2009)CrossRefGoogle Scholar
  17. 17.
    Myles, R.C., Bernus, O., Burton, F.L., Cobbe, S.M., Smith, G.L.: Effect of activation sequence on transmural patterns of repolarization and action potential duration in rabbit ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 299, H1812–H1822 (2010)CrossRefGoogle Scholar
  18. 18.
    Walton, R.D., Benson, A.P., Hardy, M.E., White, E., Bernus, O.: Electrophysiological and structural determinants of electrotonic modulation of repolarization by the activation sequence. Front. Physiol. 4, 281 (2013)CrossRefGoogle Scholar
  19. 19.
    Yuan, S., Kongstad, O., Hertervig, E., Holm, M., Grins, E., Olsson, B.: Global repolarization sequence of the ventricular endocardium: monophasic action potential mapping in swine and humans. Pacing Clin. Electrophysiol. 24, 1479–1488 (2001)CrossRefGoogle Scholar
  20. 20.
    Yue, A.M., Betts, T.R., Roberts, P.R., Morgan, J.M.: Global dynamic coupling of activation and repolarization in the human ventricle. Circulation. 112, 2592–2601 (2005)CrossRefGoogle Scholar
  21. 21.
    Joyner, R.W.: Modulation of repolarization by electrotonic interactions. Jpn. Heart J. 27(Suppl 1), 167–183 (1986)Google Scholar
  22. 22.
    Zubair, I., Pollard, A.E., Spitzer, K.W., Burgess, M.J.: Effects of activation sequence on the spatial distribution of repolarization properties. J. Electrocardiol. 27, 115–127 (1994)CrossRefGoogle Scholar
  23. 23.
    Rossi, S., Buccarello, A., Ershler, P.R., Lux, R. L., Callegari, S., Corradi, D., Carnevali, L., Sgoifo, A., Miragoli, M., Musso, E., Macchi, E.: Effect of anisotropy on ventricular vulnerability to unidirectional block and reentry by single premature stimulation during normal sinus rhythm in rat heart. Am. J. Physiol. Heart Circ. Physiol. 312, H584–H607 (2017)CrossRefGoogle Scholar
  24. 24.
    Haws, C.W., Lux, R.L.: Correlation between in vivo transmembrane action potential durations and activation-recovery intervals from electrograms. Effects of interventions that alter repolarization time. Circulation. 81, 281–288 (1990)CrossRefGoogle Scholar
  25. 25.
    Millar, C.K., Kralios, F.A., Lux, R.L.: Correlation between refractory periods and activation-recovery intervals from electrograms: effects of rate and adrenergic interventions. Circulation. 72, 1372–1379 (1985)CrossRefGoogle Scholar
  26. 26.
    Macchi, E., Cavalieri, M., Stilli, D., Musso, E., Baruffi, S., Olivetti, G., Ershler, P.R., Lux, R.L., Taccardi, B.: High-density epicardial mapping during current injection and ventricular activation in rat hearts. Am. J. Physiol. Heart Circ. Physiol. 275, H1886–H1897 (1998)CrossRefGoogle Scholar
  27. 27.
    Rossi, S., Baruffi, S., Bertuzzi, A., Miragoli, M., Corradi, D., Maestri, R., Alinovi, R., Mutti, A., Musso, E., Sgoifo, A., Brisinda, D., Fenici, R., Macchi, E.: Ventricular activation is impaired in aged rat hearts. Am. J. Physiol. Heart Circ. Physiol. 295, H2336–H2347 (2008)CrossRefGoogle Scholar
  28. 28.
    Burgess, M.J., Steinhaus, B.M., Spitzer, K.W., Green, L.S.: Effects of activation sequence on ventricular refractory periods of ischemic canine myocardium. J. Electrocardiol. 18, 323–329 (1985)CrossRefGoogle Scholar
  29. 29.
    Toyoshima, H., Burgess, M.: Electrotonic interaction during canine ventricular repolarization. Circ. Res. 43, 348–356 (1978)CrossRefGoogle Scholar
  30. 30.
    Qu, Z.: Dynamical effects of diffusive cell coupling on cardiac excitation and propagation: a simulation study. Am. J. Physiol. Heart Circ. Physiol. 287, H2803–H2812 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità AmbientaleUniversità di ParmaParmaItaly
  2. 2.Dipartimento di Medicina e ChirurgiaUniversità di ParmaParmaItaly

Personalised recommendations