Ergotropic Effect in Cardiac Tissue After Electromagnetic and β-Adrenergic Stimulus

  • Lorenzo FassinaEmail author
  • Marisa Cornacchione
  • Maria Evelina Mognaschi
  • Giovanni Magenes
  • Fabio Naro
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 16)


In a murine ventricular cardiac tissue in vitro, via an image processing analysis, we have studied the ergotropic effect (contraction energy) after electromagnetic stimulation (frequency, 75 Hz), isoproterenol administration (10 μM), and their combination. We have found that the electromagnetic stimulation is able to counteract the β-adrenergic action of isoproterenol.



This work was supported by Research Grants from INAIL (INAIL 2010 to FN), from Sapienza University of Rome (Ateneo 2009 to FN), and from the Italian Ministry of University (FIRB 2010 RBAP109BLT_003 and PRIN 2010 KL2Y73-006 to FN).


  1. 1.
    Capelli, E., Torrisi, F., Venturini, L., Granato, M., Fassina, L., Lupo, G.F.D., Ricevuti, G.: Low-frequency pulsed electromagnetic field is able to modulate miRNAs in an experimental cell model of Alzheimer’s disease. J. Healthcare Eng. 2017, Article ID 2530270 (2017)CrossRefGoogle Scholar
  2. 2.
    Ceccarelli, G., Bloise, N., Mantelli, M., Gastaldi, G., Fassina, L., Cusella De Angelis, M.G., Ferrari, D., Imbriani, M., Visai, L.: A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Biores. Open Access 2, 283–294 (2013)Google Scholar
  3. 3.
    Cornacchione, M., Pellegrini, M., Fassina, L., Mognaschi, M.E., Di Siena, S., Gimmelli, R., Ambrosino, P., Soldovieri, M.V., Taglialatela, M., Gianfrilli, D., Isidori, A.M., Lenzi, A., Naro, F.: β-Adrenergic response is counteracted by extremely-low-frequency pulsed electromagnetic fields in beating cardiomyocytes. J. Mol. Cell Cardiol. 98, 146–158 (2016)CrossRefGoogle Scholar
  4. 4.
    Cui, Y., Liu, X., Yang, T., Mei, Y.A., Hu, C.: Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cell Calcium 55, 48–58 (2014)CrossRefGoogle Scholar
  5. 5.
    Devic, E., Xiang, Y., Gould, D., Kobilka, B.: β-adrenergic receptor subtype-specific signaling in cardiac myocytes from β1 and β2 adrenoceptor knockout mice. Mol. Pharmacol. 60, 577–583 (2001)Google Scholar
  6. 6.
    Di Barba, P., Fassina, L., Magenes, G., Mognaschi, M.E.: Shape synthesis of a well-plate for electromagnetic stimulation of cells. Int. J. Numer. Modell. Electron. Networks Devices Fields (2018, in press)Google Scholar
  7. 7.
    Elmas, O., Comlekci, S., Koylu, H.: Effects of short-term exposure to powerline-frequency electromagnetic field on the electrical activity of the heart. Arch. Environ. Occup. Health 67, 65–71 (2012)CrossRefGoogle Scholar
  8. 8.
    Falone, S., Marchesi, N., Osera, C., Fassina, L., Comincini, S., Amadio, M., Pascale, A.: Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells. Int. J. Radiat. Biol. 92, 281–286 (2016)CrossRefGoogle Scholar
  9. 9.
    Fassina, L., Visai, L., Asti, L., Benazzo, F., Speziale, P., Tanzi, M.C., Magenes, G.: Calcified matrix production by SAOS-2 cells inside a polyurethane porous scaffold, using a perfusion bioreactor. Tissue Eng. 11, 685–700 (2005)CrossRefGoogle Scholar
  10. 10.
    Fassina, L., Visai, L., Benazzo, F., Benedetti, L., Calligaro, A., Cusella De Angelis, M.G., Farina, A., Maliardi, V., Magenes, G.: Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Eng. 12, 1985–1999 (2006)CrossRefGoogle Scholar
  11. 11.
    Fassina, L., Visai, L., Cusella De Angelis, M.G., Benazzo, F., Magenes, G.: Surface modification of a porous polyurethane through a culture of human osteoblasts and an electromagnetic bioreactor. Technol. Health Care 15, 33–45 (2007)Google Scholar
  12. 12.
    Fassina, L., Saino, E., Visai, L., Cusella De Angelis, M.G., Benazzo, F., Magenes, G.: Enhanced in vitro culture of human SAOS-2 osteoblasts on a sand-blasted titanium surface modified with plastic deformation. Conf. Proc. IEEE Eng Med. Biol. Soc. 2007, 6411–6414 (2007)Google Scholar
  13. 13.
    Fassina, L., Saino, E., Visai, L., Magenes, G.: Physically enhanced coating of a titanium plasma-spray surface with human SAOS-2 osteoblasts and extracellular matrix. Conf. Proc. IEEE Eng Med. Biol. Soc. 2007, 6415–6418 (2007)Google Scholar
  14. 14.
    Fassina, L., Saino, E., Visai, L., Silvani, G., Cusella De Angelis, M.G., Mazzini, G., Benazzo, F., Magenes, G.: Electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto titanium fiber-mesh scaffolds. J. Biomed. Mater. Res. A 87, 750–759 (2008)Google Scholar
  15. 15.
    Fassina, L., Saino, E., Visai, L., Magenes, G.: Electromagnetically enhanced coating of a sintered titanium grid with human SAOS-2 osteoblasts and extracellular matrix. Conf. Proc. IEEE Eng Med. Biol. Soc. 2008, 3582–3585 (2008)Google Scholar
  16. 16.
    Fassina, L., Saino, E., Sbarra, M.S., Visai, L., Cusella De Angelis, M.G., Mazzini, G., Benazzo, F., Magenes, G.: Ultrasonic and electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto a titanium plasma-spray surface. Tissue Eng Part C Methods 15, 233–242 (2009)CrossRefGoogle Scholar
  17. 17.
    Fassina, L., Saino, E., Cusella De Angelis, M.G., Magenes, G., Benazzo, F., Visai, L.: Low-power ultrasounds as a tool to culture human osteoblasts inside cancellous hydroxyapatite. Bioinorg. Chem. Appl. 2010, Article ID 456240 (2010)Google Scholar
  18. 18.
    Fassina, L., Saino, E., Sbarra, M.S., Visai, L., Cusella De Angelis, M.G., Magenes, G., Benazzo, F.: In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite. J. Biomed. Mater. Res. A 93, 1272–1279 (2010)Google Scholar
  19. 19.
    Fassina, L., Saino, E., Visai, L., Avanzini, M.A., Cusella De Angelis, M.G., Benazzo, F., Van Vlierberghe, S., Dubruel, P., Magenes, G.: Use of a gelatin cryogel as biomaterial scaffold in the differentiation process of human bone marrow stromal cells. Conf. Proc. IEEE Eng Med. Biol. Soc. 1, 247–250 (2010)Google Scholar
  20. 20.
    Fassina, L., Di Grazia, A., Naro, F., Monaco, L., Cusella De Angelis, M.G., Magenes, G.: Video evaluation of the kinematics and dynamics of the beating cardiac syncytium: an alternative to the Langendorff method. Int. J. Artif. Organs 34, 546–558 (2011)CrossRefGoogle Scholar
  21. 21.
    Fassina, L., Saino, E., Visai, L., Schelfhout, J., Dierick, M., Van Hoorebeke, L., Dubruel, P., Benazzo, F., Magenes, G., Van Vlierberghe, S.: Electromagnetic stimulation to optimize the bone regeneration capacity of gelatin-based cryogels. Int. J. Immunopathol. Pharmacol. 25, 165–174 (2012)CrossRefGoogle Scholar
  22. 22.
    Fassina, L., Di Grazia, A., Naro, F., Aguanno, S., Cornacchione, M., Cusella De Angelis, M.G., Sardi, F., Magenes, G.: Effects of the hydrostatic pressure in in vitro beating cardiac syncytia in terms of kinematics (kinetic energy and beat frequency) and syncytia geometrical-functional classification. Conf. Proc. IEEE Eng Med. Biol. Soc. 2013, 854–857 (2013)Google Scholar
  23. 23.
    Fassina, L., Magenes, G., Gimmelli, R., Naro, F.: Modulation of the cardiomyocyte contraction inside a hydrostatic pressure bioreactor: in vitro verification of the Frank-Starling law. Biomed. Res. Int. 2015, Article ID 542105 (2015)CrossRefGoogle Scholar
  24. 24.
    Fassina, L., Cornacchione, M., Pellegrini, M., Mognaschi, M.E., Gimmelli, R., Isidori, A.M., Lenzi, A., Magenes, G., Naro, F.: Model of murine ventricular cardiac tissue for in vitro kinematic-dynamic studies of electromagnetic and β-adrenergic stimulation. J. Healthcare Eng. 2017, Article ID 4204085 (2017)CrossRefGoogle Scholar
  25. 25.
    Fassina, L., Rozzi, G., Rossi, S., Scacchi, S., Galetti, M., Lo Muzio, F.P., Del Bianco, F., Colli Franzone, P., Petrilli, G., Faggian, G., Miragoli, M.: Cardiac kinematic parameters computed from video of in situ beating heart. Sci. Rep. 7, Article no. 46143 (2017)Google Scholar
  26. 26.
    Icaro Cornaglia, A., Casasco, M., Riva, F., Farina, A., Fassina, L., Visai, L., Casasco, A.: Stimulation of osteoblast growth by an electromagnetic field in a model of bone-like construct. Eur. J. Histochem. 50, 199–204 (2006)Google Scholar
  27. 27.
    Janssen, P.M.L., Schiereck, P., Honda, H., Naya, T., Koiwa, Y.: The effect of applied mechanical vibration on two different phases of rat papillary muscle relaxation. Pflügers Arch. 434, 795–800 (1997)CrossRefGoogle Scholar
  28. 28.
    Korpinen, L., Partanen, J., Uusitalo, A.: Influence of 50 Hz electric and magnetic fields on the human heart. Bioelectromagnetics 14, 329–340 (1993)CrossRefGoogle Scholar
  29. 29.
    Lohse, M.J., Engelhardt, S., Eschenhagen, T.: What is the role of β-adrenergic signaling in heart failure? Circ. Res. 93, 896–906 (2003)CrossRefGoogle Scholar
  30. 30.
    Mandarim-de-Lacerda, C.A.: Stereological tools in biomedical research. An. Acad. Bras. Cienc. 75, 469–486 (2003)CrossRefGoogle Scholar
  31. 31.
    Marchesi, N., Osera, C., Fassina, L., Amadio, M., Angeletti, F., Morini, M., Magenes, G., Venturini, L., Biggiogera, M., Ricevuti, G., Govoni, S., Caorsi, S., Pascale, A., Comincini, S.: Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields. J. Cell Physiol. 229, 1776–1786 (2014)CrossRefGoogle Scholar
  32. 32.
    Meraviglia, V., Wen, J., Piacentini, L., Campostrini, G., Wang, C., Florio, M.C., Azzimato, V., Fassina, L., Langes, M., Wong, J., Miragoli, M., Gaetano, C., Pompilio, G., Barbuti, A., Di Francesco, D., Mascalzoni, D., Pramstaller, P.P., Colombo, G.I., Chen, H.S., Rossini, A.: Higher cardiogenic potential of iPSCs derived from cardiac versus skin stromal cells. Front Biosci. (Landmark. Ed) 21, 719–743 (2016)Google Scholar
  33. 33.
    Mognaschi, M.E., Di Barba, P., Magenes, G., Lenzi, A., Naro, F., Fassina, L.: Field models and numerical dosimetry inside an extremely-low-frequency electromagnetic bioreactor: the theoretical link between the electromagnetically induced mechanical forces and the biological mechanisms of the cell tensegrity. Springerplus 3, 473 (2014)CrossRefGoogle Scholar
  34. 34.
    Mühlfeld, C., Nyengaard, J.R., Mayhew, T.M.: A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. Cardiovasc. Pathol. 19, 65–82 (2010)CrossRefGoogle Scholar
  35. 35.
    Osera, C., Fassina, L., Amadio, M., Venturini, L., Buoso, E., Magenes, G., Govoni, S., Ricevuti, G., Pascale, A.: Cytoprotective response induced by electromagnetic stimulation on SH-SY5Y human neuroblastoma cell line. Tissue Eng. Part A 17, 2573–2582 (2011)CrossRefGoogle Scholar
  36. 36.
    Osera, C., Amadio, M., Falone, S., Fassina, L., Magenes, G., Amicarelli, F., Ricevuti, G., Govoni, S., Pascale, A.: Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2-induced ROS production by increasing MnSOD activity. Bioelectromagnetics 36, 219–232 (2015)CrossRefGoogle Scholar
  37. 37.
    Pasi, F., Fassina, L., Mognaschi, M.E., Lupo, G.F.D., Corbella, F., Nano, R., Capelli, E.: Pulsed electromagnetic field with temozolomide can elicit an epigenetic pro-apoptotic effect on glioblastoma T98G cells. Anticancer Res. 36, 5821–5826 (2016)CrossRefGoogle Scholar
  38. 38.
    Pavalko, F.M., Norvell, S.M., Burr, D.B., Turner, C.H., Duncan, R.L., Bidwell, J.P.: A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J. Cell Biochem. 88, 104–112 (2003)CrossRefGoogle Scholar
  39. 39.
    Rebuzzini, P., Cebral, E., Fassina, L., Redi, C.A., Zuccotti, M., Garagna, S.: Arsenic trioxide alters the differentiation of mouse embryonic stem cell into cardiomyocytes. Sci. Rep. 5 Article no. 14993 (2015)Google Scholar
  40. 40.
    Rebuzzini, P., Fassina, L., Mulas, F., Bellazzi, R., Redi, C.A., Di Liberto, R., Magenes, G., Adjaye, J., Zuccotti, M., Garagna, S.: Mouse embryonic stem cells irradiated with γ-rays differentiate into cardiomyocytes but with altered contractile properties. Mutat. Res. 756, 37–45 (2013)CrossRefGoogle Scholar
  41. 41.
    Rohrer, D.K., Chruscinski, A., Schauble, E.H., Bernstein, D., Kobilka, B.K.: Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J. Biol. Chem. 274, 16701–16708 (1999)CrossRefGoogle Scholar
  42. 42.
    Saino, E., Maliardi, V., Quartarone, E., Fassina, L., Benedetti, L., Cusella De Angelis, M.G., Mustarelli, P., Facchini, A., Visai, L.: In vitro enhancement of SAOS-2 cell calcified matrix deposition onto radio frequency magnetron sputtered bioglass-coated titanium scaffolds. Tissue Eng. Part A 16, 995–1008 (2010)Google Scholar
  43. 43.
    Saino, E., Fassina, L., Van Vlierberghe, S., Avanzini, M.A., Dubruel, P., Magenes, G., Visai, L., Benazzo, F.: Effects of electromagnetic stimulation on osteogenic differentiation of human mesenchymal stromal cells seeded onto gelatin cryogel. Int. J. Immunopathol. Pharmacol. 24, 1–6 (2011)CrossRefGoogle Scholar
  44. 44.
    Savitz, D.A., Liao, D., Sastre, A., Kleckner, R.C., Kavet, R.: Magnetic field exposure and cardiovascular disease mortality among electric utility workers. Am. J. Epidemiol. 149, 135–142 (1999)CrossRefGoogle Scholar
  45. 45.
    Xiang, Y., Rybin, V.O., Steinberg, S.F., Kobilka, B.: Caveolar localization dictates physiologic signaling of β2-adrenoceptors in neonatal cardiac myocytes. J. Biol. Chem. 277, 34280–34286 (2002)CrossRefGoogle Scholar
  46. 46.
    Xiang, Y., Naro, F., Zoudilova, M., Jin, S.L., Conti, M., Kobilka, B.: Phosphodiesterase 4D is required for β2 adrenoceptor subtype-specific signaling in cardiac myocytes. Proc. Natl. Acad. Sci. USA 102, 909–914 (2005)CrossRefGoogle Scholar
  47. 47.
    Young, S.R., Gerard-O’Riley, R., Kim, J.B., Pavalko, F.M.: Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. J. Bone Miner. Res. 24, 411–424 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lorenzo Fassina
    • 1
    Email author
  • Marisa Cornacchione
    • 2
  • Maria Evelina Mognaschi
    • 1
  • Giovanni Magenes
    • 1
  • Fabio Naro
    • 3
  1. 1.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  2. 2.IRCCS SDNNaplesItaly
  3. 3.Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly

Personalised recommendations