Advertisement

High-Order Operator-Splitting Methods for the Bidomain and Monodomain Models

  • Jessica CerviEmail author
  • Raymond J. Spiteri
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 16)

Abstract

The bidomain and monodomain models are among the most widely used mathematical models to describe cardiac electrophysiology. They take the form of multi-scale reaction-diffusion partial differential equations that couple the dynamic behaviour on the cellular scale with that on the tissue scale. The systems of differential equations associated with these models are large and strongly non-linear, but they also have a distinct structure due to their multi-scale nature. For these reasons, numerical solutions to these systems are often found via operator-splitting methods. In this chapter, we provide a survey of operator-splitting methods for the numerical solution of differential equations. In particular, we focus on splitting methods with order higher than two that, according to the Sheng–Suzuki theorem, require backward time integration and historically have been considered unstable for solving deterministic parabolic systems. We demonstrate the stability of operator-splitting methods of up to order four to solve the bidomain and monodomain models on several examples arising in the field of cardiovascular modeling.

References

  1. 1.
    Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Autumn, A.C., et al.: An overview of CellML 1.1, a biological model description language. Simulation 79(12), 740–747 (2003)CrossRefGoogle Scholar
  3. 3.
    Auzinger, W., Herfort, W.: Local error structures and order conditions in terms of lie elements for exponential splitting schemes. Opuscula Mathematica 34(2) (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Auzinger, W., Herfort, W., Hofstätter, H., Koch, O.: Setup of order conditions for splitting methods. In: Computer Algebra in Scientific Computing: 18th International Workshop, CASC 2016, Bucharest, Romania, September 19–23, 2016, Proceedings, pp. 30–42. Springer International Publishing (2016)Google Scholar
  5. 5.
    Auzinger, W., Hofstätter, H., Ketcheson, D., Koch, O.: Practical splitting methods for the adaptive integration of nonlinear evolution equations. part i: Construction of optimized schemes and pairs of schemes. BIT Numerical Mathematics 1–20 (2016)Google Scholar
  6. 6.
    Blanes, S., Casas, F.: On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Numer. Math. 54(1), 23–37 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blanes, S., Casas, F., Farres, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68, 58–72 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cherry, E.M., Greenside, H.S., Henriquez, C.S.: A space-time adaptive method for simulating complex cardiac dynamics. Phys. Rev. Lett. 84(6), 1343 (2000)CrossRefGoogle Scholar
  9. 9.
    Crouzeix, M.: Sur lapproximation des équations différentielles opérationelles linéaires par des méthodes de Runge–Kutta. PhD thesis, Université Paris (1978)Google Scholar
  10. 10.
    FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Schwan, H.P. (ed.) Biological Engineering, pp. 1–85. McGraw-Hill (1966)Google Scholar
  11. 11.
    Geraldo-Giorda, L.: Nonlinear Dynamics in Biological Systems, vol. 7. Springer International Publishing (2016)Google Scholar
  12. 12.
    Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89(3), 271–306 (1959)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Goldman, G., Kaper, T.J.: Nth-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33(1), 349–367 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Koch, O., Neuhauser, Ch., Thalhammer, M.: Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations. Appl. Numer. Math. 63, 14–24 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhauser, Basel (1992)CrossRefGoogle Scholar
  16. 16.
    Luo, C.H., Rudy, Y.: A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circulation Research 68(6), 1501–1526 (1991)CrossRefGoogle Scholar
  17. 17.
    Marchuk, G.I.: Splitting Methods. Nauka, Moscow (1988)Google Scholar
  18. 18.
    Marsh, M.E., Ziaratgahi, S.T., Spiteri, R.J.: The secrets to the success of the rush–larsen method and its generalizations. IEEE Trans. Biomed. Eng. 59(9), 2506–2515 (2012)CrossRefGoogle Scholar
  19. 19.
    Mirams, G.R., et al.: Chaste: An open source C++ library for computational physiology and biology. PLoS Comput. Biol. 9(3) (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Niederer, S.A., et al.: Verification of cardiac tissue electrophysiology simulators using an n-version benchmark. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 369(1954), 4331–4351 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nørsett, S.P.: Semi explicit Runge–Kutta methods. Mathematics and Computation, no. 6. University of Trondheim (1974)Google Scholar
  22. 22.
    Pathmanathan, P., Mirams, G.R., Southern, J., Whiteley, J.P.: The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations. Int. J. Numer. Methods Biomed. Eng. 27(11), 1751–1770 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Qu, Z., Garfinkel, A.: An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46(9), 1166–1168 (1999)CrossRefGoogle Scholar
  24. 24.
    Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30 (1983)CrossRefGoogle Scholar
  25. 25.
    Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9, 199–212 (1989)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sornborger, A.T.: Higher-order operator splitting methods for deterministic parabolic equations. Int. J. Comput. Math. 84(6), 887–893 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sornborger, A.T., Stewart, E.D.: Higher-order methods for simulations on quantum computers. Phys. Rev. A 60(3), 765–789 (1999)CrossRefGoogle Scholar
  28. 28.
    Spiteri, R.J., Dean, R.C.: Stiffness analysis of cardiac electrophysiological models. Ann. Biomed. Eng. 38(12), 3592–3604 (2010)CrossRefGoogle Scholar
  29. 29.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sundnes, J., Lines, G.T., Cai, X.: Computing the Electrical Activity in the Heart. Springer (2006)Google Scholar
  31. 31.
    Sundnes, J., Lines, G.T., Tveito, A.: An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Mathematical Biosciences 194(2), 233–248 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Suzuki, M.: Solving linear partial differential equa tions by exponential splitting. IMA J. Numer. Anal. 9, 400–407 (1991)Google Scholar
  33. 33.
    Ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291(3), H1088–H1100 (2006)CrossRefGoogle Scholar
  34. 34.
    Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10(4), 545–551 (1959)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Tung, L.: A bi-domain model for describing ischemic myocardial d-c potentials. PhD thesis, Massachusetts Institute of Technology (1978)Google Scholar
  36. 36.
    Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5), 262–268 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of SaskatchewanSKCanada
  2. 2.Department of Computer ScienceUniversity of SaskatchewanSKCanada

Personalised recommendations