Skip to main content

A Distributed Lagrange Formulation of the Finite Element Immersed Boundary Method for Fluids Interacting with Compressible Solids

  • Chapter
  • First Online:
Mathematical and Numerical Modeling of the Cardiovascular System and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 16))

Abstract

We present a distributed Lagrange multiplier formulation of the Finite Element Immersed Boundary Method to couple incompressible fluids with compressible solids. This is a generalization of the formulation presented in Heltai and Costanzo (Comput. Methods Appl. Mech. Eng. 229/232:110–127, 2012), that offers a cleaner variational formulation, thanks to the introduction of distributed Lagrange multipliers, that act as intermediary between the fluid and solid equations, keeping the two formulation mostly separated. Stability estimates and a brief numerical validation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret, J.-P., Turcksin, B., Wells, D.: The deal.II library, version 8.5. J. Numer. Math. 25(3), 137–145 (2017)

    Google Scholar 

  2. Boffi, D., Gastaldi, L.: A finite element approach for the immersed boundary method. Comput. Struct. 81(8–11), 491–501 (2003)

    Article  MathSciNet  Google Scholar 

  3. Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.S.: On the hyper-elastic formulation of the immersed boundary method. Comput. Methods Appl. Math. Eng. 197(25–28), 2210–2231 (2008)

    Article  MathSciNet  Google Scholar 

  4. Boffi, D., Cavallini, N., Gardini, F., Gastaldi, L.: Local mass conservation of Stokes finite elements. J. Sci. Comput. 52(2), 383–400 (2012)

    Article  MathSciNet  Google Scholar 

  5. Boffi, D., Cavallini, N., Gastaldi, L.: The finite element immersed boundary method with distributed Lagrange multiplier. SIAM J. Numer. Anal. 53(6), 2584–2604 (2015)

    Article  MathSciNet  Google Scholar 

  6. Gurtin, M.E.: An Introduction to Continuum Mechanics, vol. 158. Academic, New York (1982)

    MATH  Google Scholar 

  7. Heltai, L., Costanzo, F.: Variational implementation of immersed finite element methods. Comput. Methods Appl. Mech. Eng. 229/232, 110–127 (2012)

    Article  MathSciNet  Google Scholar 

  8. Heltai, L., Roy, S., Costanzo, F.: A fully coupled immersed finite element method for fluid structure interaction via the Deal.II library. Arch. Numer. Softw. 2(1), 1–27 (2014)

    Google Scholar 

  9. Hughes, T.J.R., Liu, W.K., Zimmerman, T.K.: Lagrangian-Eulerian finite element formulations for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29, 329–349 (1981)

    Article  MathSciNet  Google Scholar 

  10. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)

    Article  MathSciNet  Google Scholar 

  11. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  12. Roy, S.: Numerical simulation using the generalized immersed finite element method: an application to hydrocephalus. PhD thesis, The Pennsylvania State University (2012)

    Google Scholar 

  13. Roy, S., Heltai, L., Costanzo, F.: Benchmarking the immersed finite element method for fluid-structure interaction problems. Comput. Math. Appl. 69, 1167–1188 (2015)

    Article  MathSciNet  Google Scholar 

  14. Turek, S., Hron, J.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Bungartz, H.-J., Schäfer, M. (eds.) Fluid-Structure Interaction. Lecture Notes in Computational Science and Engineering, vol. 53, pp. 371–385. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/3--540-34596--5_15

    MATH  Google Scholar 

  15. Wang, X., Liu, W.K.: Extended immersed boundary method using FEM and RKPM. Comput. Methods Appl. Mech. Eng. 193(12–14), 1305–1321 (2004)

    Article  MathSciNet  Google Scholar 

  16. Zhang, L., Gerstenberger, A., Wang, X., Liu, W.K.: Immersed finite element method. Comput. Methods Appl. Mech. Eng. 193(21–22), 2051–2067 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partly supported by IMATI/CNR and GNCS/INDAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Boffi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boffi, D., Gastaldi, L., Heltai, L. (2018). A Distributed Lagrange Formulation of the Finite Element Immersed Boundary Method for Fluids Interacting with Compressible Solids. In: Boffi, D., Pavarino, L., Rozza, G., Scacchi, S., Vergara, C. (eds) Mathematical and Numerical Modeling of the Cardiovascular System and Applications. SEMA SIMAI Springer Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-96649-6_1

Download citation

Publish with us

Policies and ethics