Skip to main content

Thermal Energy Storage with Chemical Reactions

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The chapter addresses the main issues dealing with four types of reversible processes, such as dehydration of salt hydrates and hydroxides, thermal decomposition of oxides and perovskites for thermal energy storage as example of thermochemical processes covering a broad range of temperature heat sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shkatulov A, Aristov Y (2015) Modification of magnesium and calcium hydroxides with salts: an efficient way to advanced materials for storage of middle-temperature heat. Energy 85:667–676. https://doi.org/10.1016/J.ENERGY.2015.04.004

    Article  Google Scholar 

  2. Scapino L, Zondag HA, Van Bael J et al (2017) Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale. Appl Energy 190:920–948. https://doi.org/10.1016/j.apenergy.2016.12.148

    Article  Google Scholar 

  3. Yan T, Wang RZ, Li TX et al (2015) A review of promising candidate reactions for chemical heat storage. Renew Sustain Energy Rev 43:13–31. https://doi.org/10.1016/J.RSER.2014.11.015

    Article  Google Scholar 

  4. Trausel F, de Jong A-J, Cuypers R (2014) A review on the properties of salt hydrates for thermochemical storage. Energy Procedia 48:447–452. https://doi.org/10.1016/J.EGYPRO.2014.02.053

    Article  Google Scholar 

  5. Huang Q, Lu G, Wang J, Yu J (2011) Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O. J Anal Appl Pyrolysis 91:159–164. https://doi.org/10.1016/J.JAAP.2011.02.005

    Article  Google Scholar 

  6. N’Tsoukpoe KE, Rammelberg HU, Lele AF et al (2015) A review on the use of calcium chloride in applied thermal engineering. Appl Therm Eng 75:513–531. https://doi.org/10.1016/J.APPLTHERMALENG.2014.09.047

    Article  Google Scholar 

  7. van Essen VM, Zondag HA, Gores JC et al (2009) Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. J Sol Energy Eng 131:41014. https://doi.org/10.1115/1.4000275

    Article  Google Scholar 

  8. Kallenberger PA, Brieler FJ, Posern K, Fröba M (2016) Magnesium sulfate/polymer composites for seasonal, thermochemical energy storage. Chemie Ing Tech 88:379–384. https://doi.org/10.1002/cite.201500095

    Article  Google Scholar 

  9. Posern K, Linnow K, Niermann M et al (2015) Thermochemical investigation of the water uptake behavior of MgSO4 hydrates in host materials with different pore size. Thermochim Acta 611:1–9. https://doi.org/10.1016/J.TCA.2015.04.031

    Article  Google Scholar 

  10. Korhammer K, Druske M-M, Fopah-Lele A et al (2016) Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage. Appl Energy 162:1462–1472. https://doi.org/10.1016/J.APENERGY.2015.08.037

    Article  Google Scholar 

  11. Gaeini M, Rouws AL, Salari JWO et al (2018) Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage. Appl Energy 212:1165–1177. https://doi.org/10.1016/j.apenergy.2017.12.131

    Article  Google Scholar 

  12. Gutierrez A, Ushak S, Mamani V et al (2017) Characterization of wastes based on inorganic double salt hydrates as potential thermal energy storage materials. Sol Energy Mater Sol Cells 170:149–159. https://doi.org/10.1016/J.SOLMAT.2017.05.036

    Article  Google Scholar 

  13. Rammelberg HU, Osterland T, Priehs B et al (2016) Thermochemical heat storage materials—performance of mixed salt hydrates. Sol Energy 136:571–589. https://doi.org/10.1016/J.SOLENER.2016.07.016

    Article  Google Scholar 

  14. Knoll C, Müller D, Artner W et al (2017) Probing cycle stability and reversibility in thermochemical energy storage—CaC2O4·H2O as perfect match? Appl Energy 187:1–9. https://doi.org/10.1016/J.APENERGY.2016.11.053

    Article  Google Scholar 

  15. N’Tsoukpoe KE, Schmidt T, Rammelberg HU et al (2014) A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage. Appl Energy 124:1–16. https://doi.org/10.1016/J.APENERGY.2014.02.053

    Article  Google Scholar 

  16. Deutsch M, Müller D, Aumeyr C et al (2016) Systematic search algorithm for potential thermochemical energy storage systems. Appl Energy 183:113–120. https://doi.org/10.1016/J.APENERGY.2016.08.142

    Article  Google Scholar 

  17. Donkers PAJ, Sögütoglu LC, Huinink HP et al (2017) A review of salt hydrates for seasonal heat storage in domestic applications. Appl Energy 199:45–68. https://doi.org/10.1016/J.APENERGY.2017.04.080

    Article  Google Scholar 

  18. Kato Y, Koyama M, Fukushima Y, Nakagaki T (2016) Energy technology roadmaps of Japan. Springer, Tokyo

    Book  Google Scholar 

  19. Schaube F, Koch L, Wörner A, Müller-Steinhagen H (2012) A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage. Thermochim Acta 538:9–20. https://doi.org/10.1016/J.TCA.2012.03.003

    Article  Google Scholar 

  20. Ogura H, Kubota M, Suzuki H, Yamakawa T (2009) Fundamental experimental study on chemical heat pump for storing low-temperature waste heat and releasing cold-heat. Kagaku Kogaku Ronbunshu 35:506–510. https://doi.org/10.1252/kakoronbunshu.35.506

    Article  Google Scholar 

  21. Hirata Y, Fujioka K, Fujiki S (2003) Preparation of fine particles of calcium chloride with expanded graphite for enhancement of the driving reaction for chemical heat pumps. J Chem Eng Japan 36:827–832. https://doi.org/10.1252/jcej.36.827

    Article  Google Scholar 

  22. Esaki T, Kobayashi N (2016) Reaction rate characteristics of SrBr2 hydration system for chemical heat pump cooling mode. J Mater Sci Chem Eng 4:106–115. https://doi.org/10.4236/msce.2016.42012

    Article  Google Scholar 

  23. Piperopoulos E, Mastronardo E, Fazio M et al (2018) Enhancing the volumetric heat storage capacity of Mg(OH)2 by the addition of a cationic surfactant during its synthesis. Appl Energy 215:512–522. https://doi.org/10.1016/J.APENERGY.2018.02.047

    Article  Google Scholar 

  24. Kato Y, Yamashita N, Kobayashi K, Yoshizawa Y (1996) Kinetic study of the hydration of magnesium oxide for a chemical heat pump. Appl Therm Eng 16:853–862. https://doi.org/10.1016/1359-4311(96)00009-9

    Article  Google Scholar 

  25. Ishitobi H, Hirao N, Ryu J, Kato Y (2013) Evaluation of heat output densities of lithium chloride-modified magnesium hydroxide for thermochemical energy storage. Ind Eng Chem Res 52:5321–5325. https://doi.org/10.1021/ie302841y

    Article  Google Scholar 

  26. Myagmarjav O, Ryu J, Kato Y (2014) Lithium bromide-mediated reaction performance enhancement of a chemical heat-storage material for magnesium oxide/water chemical heat pumps. Appl Therm Eng 63:170–176. https://doi.org/10.1016/J.APPLTHERMALENG.2013.10.045

    Article  Google Scholar 

  27. Zamengo M, Ryu J, Kato Y (2013) Magnesium hydroxide—expanded graphite composite pellets for a packed bed reactor chemical heat pump. Appl Therm Eng 61:853–858. https://doi.org/10.1016/J.APPLTHERMALENG.2013.04.045

    Article  Google Scholar 

  28. Mastronardo E, Bonaccorsi L, Kato Y et al (2017) Strategies for the enhancement of heat storage materials performances for MgO/H2O/Mg(OH)2 thermochemical storage system. Appl Therm Eng 120:626–634. https://doi.org/10.1016/J.APPLTHERMALENG.2017.04.004

    Article  Google Scholar 

  29. Mastronardo E, Bonaccorsi L, Kato Y et al (2016) Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps. Appl Energy 162:31–39. https://doi.org/10.1016/J.APENERGY.2015.10.066

    Article  Google Scholar 

  30. Tae Kim S, Kato Y (2011) Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump. Prog Nucl Energy 53:1027–1033. https://doi.org/10.1016/J.PNUCENE.2011.05.013

    Article  Google Scholar 

  31. Zamengo M, Tomaškovic J, Ryu J, Kato Y (2016) Thermal conductivity measurements of expanded graphite-magnesium hydroxide composites for packed bed reactors of chemical heat storage/pump systems. J Chem Eng Japan 49:261–267. https://doi.org/10.1252/jcej.14we292

  32. Mastronardo E, Kato Y, Bonaccorsi L et al (2017) Thermochemical storage of middle temperature wasted heat by functionalized C/Mg(OH)2 hybrid materials. Energies 10:70. https://doi.org/10.3390/en10010070

    Article  Google Scholar 

  33. Mastronardo E, Bonaccorsi L, Kato Y et al (2016) Thermochemical performance of carbon nanotubes based hybrid materials for MgO/H2O/Mg(OH)2 chemical heat pumps. Appl Energy 181:232–243. https://doi.org/10.1016/J.APENERGY.2016.08.041

    Article  Google Scholar 

  34. Prieto C, Cooper P, Fernández AI, Cabeza LF (2016) Review of technology: thermochemical energy storage for concentrated solar power plants. Renew Sustain Energy Rev 60:909–929. https://doi.org/10.1016/J.RSER.2015.12.364

    Article  Google Scholar 

  35. Bulfin B, Vieten J, Agrafiotis C et al (2017) Applications and limitations of two step metal oxide thermochemical redox cycles; a review. J Mater Chem A 5:18951–18966. https://doi.org/10.1039/C7TA05025A

    Article  Google Scholar 

  36. Block T, Schmücker M (2016) Metal oxides for thermochemical energy storage: a comparison of several metal oxide systems. Sol Energy 126:195–207. https://doi.org/10.1016/J.SOLENER.2015.12.032

    Article  Google Scholar 

  37. Agrafiotis C, Roeb M, Schmücker M, Sattler C (2014) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: testing of cobalt oxide-based powders. Sol Energy 102:189–211. https://doi.org/10.1016/J.SOLENER.2013.12.032

    Article  Google Scholar 

  38. Carrillo AJ, Moya J, Bayón A et al (2014) Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: pure oxides versus mixed ones. Sol Energy Mater Sol Cells 123:47–57. https://doi.org/10.1016/J.SOLMAT.2013.12.018

    Article  Google Scholar 

  39. Müller D, Knoll C, Artner W et al (2017) Combining in-situ X-ray diffraction with thermogravimetry and differential scanning calorimetry—an investigation of Co3O4, MnO2 and PbO2 for thermochemical energy storage. Sol Energy 153:11–24. https://doi.org/10.1016/J.SOLENER.2017.05.037

    Article  Google Scholar 

  40. Schrader AJ, Muroyama AP, Loutzenhiser PG (2015) Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions: thermodynamic analysis. Sol Energy 118:485–495. https://doi.org/10.1016/J.SOLENER.2015.05.045

    Article  Google Scholar 

  41. Muroyama AP, Schrader AJ, Loutzenhiser PG (2015) Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions II: kinetic analyses. Sol Energy 122:409–418. https://doi.org/10.1016/J.SOLENER.2015.08.038

    Article  Google Scholar 

  42. Schrader AJ, De Dominicis G, Schieber GL, Loutzenhiser PG (2017) Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions III: solar thermochemical reactor design and modeling. Sol Energy 150:584–595. https://doi.org/10.1016/J.SOLENER.2017.05.003

    Article  Google Scholar 

  43. Singh A, Tescari S, Lantin G et al (2017) Solar thermochemical heat storage via the Co3O4/CoO looping cycle: storage reactor modelling and experimental validation. Sol Energy 144:453–465. https://doi.org/10.1016/J.SOLENER.2017.01.052

    Article  Google Scholar 

  44. Carrillo AJ, Serrano DP, Pizarro P, Coronado JM (2014) Thermochemical heat storage based on the Mn2O3/Mn3O4 redox couple: influence of the initial particle size on the morphological evolution and cyclability. J Mater Chem A 2:19435–19443. https://doi.org/10.1039/C4TA03409K

    Article  Google Scholar 

  45. Deutsch M, Horvath F, Knoll C et al (2017) High-temperature energy storage: kinetic investigations of the CuO/Cu2O reaction cycle. Energy Fuels 31:2324–2334. https://doi.org/10.1021/acs.energyfuels.6b02343

    Article  Google Scholar 

  46. Haseli P, Jafarian M, Nathan GJ (2017) High temperature solar thermochemical process for production of stored energy and oxygen based on CuO/Cu2O redox reactions. Sol Energy 153:1–10. https://doi.org/10.1016/J.SOLENER.2017.05.025

    Article  Google Scholar 

  47. Alonso E, Pérez-Rábago C, Licurgo J et al (2015) First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage. Sol Energy 115:297–305. https://doi.org/10.1016/J.SOLENER.2015.03.005

    Article  Google Scholar 

  48. Wokon M, Block T, Nicolai S et al (2017) Thermodynamic and kinetic investigation of a technical grade manganese-iron binary oxide for thermochemical energy storage. Sol Energy 153:471–485. https://doi.org/10.1016/J.SOLENER.2017.05.045

    Article  Google Scholar 

  49. André L, Abanades S, Cassayre L (2017) High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides. J Solid State Chem 253:6–14. https://doi.org/10.1016/J.JSSC.2017.05.015

    Article  Google Scholar 

  50. Wokon M, Kohzer A, Linder M (2017) Investigations on thermochemical energy storage based on technical grade manganese-iron oxide in a lab-scale packed bed reactor. Sol Energy 153:200–214. https://doi.org/10.1016/J.SOLENER.2017.05.034

    Article  Google Scholar 

  51. Carrillo AJ, Serrano DP, Pizarro P, Coronado JM (2016) Manganese oxide-based thermochemical energy storage: modulating temperatures of redox cycles by Fe–Cu co-doping. J Energy Storage 5:169–176. https://doi.org/10.1016/J.EST.2015.12.005

    Article  Google Scholar 

  52. Carrillo AJ, Serrano DP, Pizarro P, Coronado JM (2016) Understanding redox kinetics of iron-doped manganese oxides for high temperature thermochemical energy storage. J Phys Chem C 120:27800–27812. https://doi.org/10.1021/acs.jpcc.6b08708

    Article  Google Scholar 

  53. Carrillo AJ, Serrano DP, Pizarro P, Coronado JM (2015) Improving the thermochemical energy storage performance of the Mn2O3 /Mn3O4 redox couple by the incorporation of iron. Chemsuschem 8:1947–1954. https://doi.org/10.1002/cssc.201500148

    Article  Google Scholar 

  54. Block T, Knoblauch N, Schmücker M (2014) The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material. Thermochim Acta 577:25–32. https://doi.org/10.1016/J.TCA.2013.11.025

    Article  Google Scholar 

  55. Tescari S, Singh A, Agrafiotis C et al (2017) Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant. Appl Energy 189:66–75. https://doi.org/10.1016/J.APENERGY.2016.12.032

    Article  Google Scholar 

  56. Agrafiotis C, Becker A, Roeb M, Sattler C (2016) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 5: testing of porous ceramic honeycomb and foam cascades based on cobalt and manganese oxides for hybrid sensible/thermochemical heat storage. Sol Energy 139:676–694. https://doi.org/10.1016/J.SOLENER.2016.09.013

    Article  Google Scholar 

  57. Karagiannakis G, Pagkoura C, Halevas E et al (2016) Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: multi-cyclic assessment and semi-quantitative heat effects estimations. Sol Energy 133:394–407. https://doi.org/10.1016/J.SOLENER.2016.04.032

    Article  Google Scholar 

  58. Agrafiotis C, Tescari S, Roeb M et al (2015) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers. Sol Energy 114:459–475. https://doi.org/10.1016/J.SOLENER.2014.12.037

    Article  Google Scholar 

  59. Agrafiotis C, Roeb M, Schmücker M, Sattler C (2015) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers. Sol Energy 114:440–458. https://doi.org/10.1016/J.SOLENER.2014.12.036

    Article  Google Scholar 

  60. Agrafiotis C, Roeb M, Sattler C (2016) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 4: screening of oxides for use in cascaded thermochemical storage concepts. Sol Energy 139:695–710. https://doi.org/10.1016/J.SOLENER.2016.04.034

    Article  Google Scholar 

  61. Babiniec SM, Coker EN, Miller JE, Ambrosini A (2015) Investigation of LaxSr1−xCoyM1−yO3−δ (M = Mn, Fe) perovskite materials as thermochemical energy storage media. Sol Energy 118:451–459. https://doi.org/10.1016/j.solener.2015.05.040

    Article  Google Scholar 

  62. Zhang Z, Andre L, Abanades S (2016) Experimental assessment of oxygen exchange capacity and thermochemical redox cycle behavior of Ba and Sr series perovskites for solar energy storage. Sol Energy 134:494–502. https://doi.org/10.1016/j.solener.2016.05.031

    Article  Google Scholar 

  63. Babiniec SM, Coker EN, Miller JE, Ambrosini A (2015) Doped calcium manganites for advanced high-temperature thermochemical energy storage. 6–10. https://doi.org/10.1002/er.3467

  64. Imponenti L, Albrecht KJ, Braun RJ, Jackson GS (2016) Measuring thermochemical energy storage capacity with redox cycles of doped-CaMnO3. ECS Trans 72:11–22. https://doi.org/10.1149/07207.0011ecst

    Article  Google Scholar 

  65. Agrafiotis C, Block T, Senholdt M et al (2017) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 6: testing of Mn-based combined oxides and porous structures. Sol Energy 149:227–244. https://doi.org/10.1016/j.solener.2017.03.083

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candida Milone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milone, C., Kato, Y., Mastronardo, E. (2019). Thermal Energy Storage with Chemical Reactions. In: Frazzica, A., Cabeza, L. (eds) Recent Advancements in Materials and Systems for Thermal Energy Storage. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96640-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96640-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96639-7

  • Online ISBN: 978-3-319-96640-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics