Skip to main content

Experimental Characterization of Sorption Thermal Energy Storage Systems

  • Chapter
  • First Online:
Recent Advancements in Materials and Systems for Thermal Energy Storage

Part of the book series: Green Energy and Technology ((GREEN))

  • 937 Accesses

Abstract

In the present chapter, the experimental methods employed for the characterisation of sorption TES are discussed. The investigated systems comprise liquid and solid sorption technologies, both for closed and open systems. In particular, the proposed procedure for the closed sorption TES systems is described in details and an example on a lab-scale adsorption TES is reported. Finally, also experimental methodologies applied for components testing, namely, kinetic testing of small-scale adsorbers and characterisation of evaporators, are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fumey B, Weber R, Gantenbein P et al (2015) Operation results of a closed sorption heat storage prototype. Energy Proc 73:324–330. https://doi.org/10.1016/j.egypro.2015.07.698

    Article  Google Scholar 

  2. Daguenet-Frick X, Gantenbein P, Müller J et al (2017) Seasonal thermochemical energy storage: comparison of the experimental results with the modelling of the falling film tube bundle heat and mass exchanger unit. Renew Energy 110:162–173. https://doi.org/10.1016/j.renene.2016.10.005

    Article  Google Scholar 

  3. Fumey B, Weber R, Baldini L (2017) Liquid sorption heat storage—a proof of concept based on lab measurements with a novel spiral fined heat and mass exchanger design. Appl Energy. https://doi.org/10.1016/j.apenergy.2017.05.056

  4. Tatsidjodoung P, Le Pierrès N, Heintz J et al (2016) Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Convers Manag 108:488–500. https://doi.org/10.1016/J.ENCONMAN.2015.11.011

    Article  Google Scholar 

  5. Gaeini M, Javed MR, Ouwerkerk H et al (2017) Realization of a 4 kW thermochemical segmented reactor in household scale for seasonal heat storage. Energy Proc 135:105–114. https://doi.org/10.1016/j.egypro.2017.09.491

    Article  Google Scholar 

  6. Schreiber H, Lanzerath F, Reinert C et al (2016) Heat lost or stored: Experimental analysis of adsorption thermal energy storage. Appl Therm Eng 106:981–991. https://doi.org/10.1016/j.applthermaleng.2016.06.058

    Article  Google Scholar 

  7. Palomba V, Vasta S, Freni A (2017) Experimental testing of AQSOA FAM Z02/water adsorption system for heat and cold storage. Appl Therm Eng 124:967–974. https://doi.org/10.1016/j.applthermaleng.2017.06.085

    Article  Google Scholar 

  8. Melograno PN, Vasta S, Boudehenn F, Döll J (2016) Quality level assessment of sorption chillers installed in solar cooling plants. Energy Proc 91:356–365. https://doi.org/10.1016/J.EGYPRO.2016.06.283

    Article  Google Scholar 

  9. Aristov YI, Dawoud B, Glaznev IS, Elyas A (2008) A new methodology of studying the dynamics of water sorption/desorption under real operating conditions of adsorption heat pumps: Experiment. Int J Heat Mass Transf 51:4966–4972. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2007.10.042

    Article  Google Scholar 

  10. Grekova AD, Gordeeva LG, Aristov YI (2017) Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage. Appl Therm Eng 124:1401–1408. https://doi.org/10.1016/J.APPLTHERMALENG.2017.06.122

    Article  Google Scholar 

  11. Grekova AD, Gordeeva LG, Lu Z et al (2018) Composite “LiCl/MWCNT” as advanced water sorbent for thermal energy storage: sorption dynamics. Sol Energy Mater Sol Cells 176:273–279. https://doi.org/10.1016/J.SOLMAT.2017.12.011

    Article  Google Scholar 

  12. Sapienza A, Santamaria S, Frazzica A et al (2014) Dynamic study of adsorbers by a new gravimetric version of the large temperature jump method. Appl Energy 113:1244–1251. https://doi.org/10.1016/J.APENERGY.2013.09.005

    Article  Google Scholar 

  13. Brancato V, Gordeeva L, Sapienza A et al (2016) Dynamics study of ethanol adsorption on microporous activated carbon for adsorptive cooling applications. Appl Therm Eng 105:28–38. https://doi.org/10.1016/j.applthermaleng.2016.05.148

    Article  Google Scholar 

  14. Gordeeva L, Frazzica A, Sapienza A et al (2014) Adsorption cooling utilizing the “LiBr/silica–ethanol” working pair: dynamic optimization of the adsorber/heat exchanger unit. Energy 75:390–399. https://doi.org/10.1016/j.energy.2014.07.088

    Article  Google Scholar 

  15. Graf S, Lanzerath F, Sapienza A et al (2016) Prediction of SCP and COP for adsorption heat pumps and chillers by combining the large-temperature-jump method and dynamic modeling. Appl Therm Eng 98:900–909. https://doi.org/10.1016/j.applthermaleng.2015.12.002

    Article  Google Scholar 

  16. Santamaria S, Sapienza A, Frazzica A et al (2014) Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers. Appl Energy 134:11–19. https://doi.org/10.1016/J.APENERGY.2014.07.053

    Article  Google Scholar 

  17. Lanzerath F, Seiler J, Erdogan M et al (2016) The impact of filling level resolved: capillary-assisted evaporation of water for adsorption heat pumps. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2016.03.052

    Article  Google Scholar 

  18. Volmer R, Eckert J, Füldner G, Schnabel L (2017) Evaporator development for adsorption heat transformation devices—influencing factors on non-stationary evaporation with tube-fin heat exchangers at sub-atmospheric pressure. Renew Energy 110:141–153. https://doi.org/10.1016/J.RENENE.2016.08.030

    Article  Google Scholar 

  19. Dang BN, Van Helden W, Luke A (2017) Investigation of water evaporation for closed sorption storage systems. Energy Proc 135:504–512. https://doi.org/10.1016/j.egypro.2017.09.493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Palomba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palomba, V., Vasta, S., Frazzica, A. (2019). Experimental Characterization of Sorption Thermal Energy Storage Systems. In: Frazzica, A., Cabeza, L. (eds) Recent Advancements in Materials and Systems for Thermal Energy Storage. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96640-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96640-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96639-7

  • Online ISBN: 978-3-319-96640-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics