Skip to main content

Modelling Water Hammer with Quasi-Steady and Unsteady Friction in Viscoelastic Pipelines

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 249))

Abstract

The model of water hammer in viscoelastic pipelines was considered. Additional term describing the retarded deformation of the pipe wall was added to continuity equation. System of partial differential equations describing this type of flow was analyzed using the method of characteristics and finite difference method. To determine the unsteady wall shear stress, a new effective method of solution which corresponds to Zielke (laminar flow) and Vardy-Brown (turbulent flow) models were used. The convolution integral of local pressure history and derivative from the material creep function is found similarly to the efficient Zielke convolution solution presented by Schohl. The research was carried out with the assumption of a quasi-steady and unsteady character of resistance. The comparison of numerical simulation and experimental results was presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bergant, A., Hou, Q., Keramat, A., Tijsseling, A.S.: Experimental and numerical analysis of waterhammer in a large-scale PVC pipeline apparatus. In: Proceedings of 4th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, pp. 27–36. Belgrade, Serbia (2011)

    Google Scholar 

  2. Bergant, A., Hou, Q., Keramat, A., Tijsseling, A.S.: Waterhammer tests in a long PVC pipeline with short steel end sections. J. Hydraul. Struct. 1(1), 23–34 (2013)

    Google Scholar 

  3. Brunone, B., Berni, A.: Wall shear stress in transient turbulent pipe flow by local velocity measurement. J. Hydraul. Eng. 136(10), 716–726 (2010)

    Article  Google Scholar 

  4. Covas, D., Stoianov, I., Ramos, H., Graham, N., Maksimovic, C.: The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I - experimental analysis and creep characterization. J. Hydraul. Res. 42(5), 517–531 (2004)

    Article  Google Scholar 

  5. Covas, D., Stoianov, I., Ramos, H., Graham, N., Maksimovic, C.: The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II - model development, calibration and verification. J. Hydraul. Res. 43(1), 56–70 (2005)

    Article  Google Scholar 

  6. Duan, H.F., Ghidaoui, M., Lee, P.J., Tung, Y.K.: Unsteady friction and visco-elasticity in pipe fluid transients. J. Hydraul. Res. 48(3), 354–362 (2010)

    Article  Google Scholar 

  7. Ferrante, M., Capponi, C.: Viscoelastic models for the simulation of transients in polymeric pipes. J. Hydraul. Res. 55(5), 1–14 (2017)

    Article  Google Scholar 

  8. Franke, P.G., Seyler, F.: Computation of unsteady pipe flow with respect to visco-elastic material properties. J. Hydraul. Res. 21(5), 345–353 (1983)

    Article  Google Scholar 

  9. Gally, M., Güney, M.S., Rieutord, E.: An investigation of pressure transients in viscoelastic pipes. J. Fluids Eng. 101(4), 495–499 (1979)

    Article  Google Scholar 

  10. Güney, M.S.: Contribution à l’étude du phénomène de coup de bélier en conduite viscoélastique. Ph.D. thesis, Université de Lyon I (1977)

    Google Scholar 

  11. Güney, M.S.: Waterhammer in viscoelastic pipes where cross-section parameters are time dependent. In: Proceedings of the 4th International Conference on Pressure Surges, pp. 189–204. BHRA Fluids Engineering, Bath, UK (1983)

    Google Scholar 

  12. Hardung, V.: Propagation of pulse waves in visco-elastic tubings. In: Handbook of Physiology. American Physiological Society, chap. 7, pp. 107–135 (1962)

    Google Scholar 

  13. Hirschmann, P.: Resonanz in visko-elastischen Druckleitungen. 29. Lehrstuhl für Hydraulik u. Gewässerkunde, Technical University of München (1979)

    Google Scholar 

  14. Horlacher, H.: Transient behavior of HDPE pipes due to pressure fluctuations. In: Proceedings of 3rd International Conference on Hydro-Science and Engineering, vol. 3. Brandenburg University of Technology at Cottbus, Cottbus/Berlin, Germany (1998)

    Google Scholar 

  15. Keramat, A., Haghighi, A.: Straightforward transient-based approach for the creep function determination in viscoelastic pipes. J. Hydraul. Eng. 140(12), 04014058 (2014)

    Article  Google Scholar 

  16. Keramat, A., Kolahi, A.G., Ahmadi, A.: Water hammer modelling of viscoelastic pipes with a time-dependent Poisson’s ratio. J. Fluids Struct. 43, 164–178 (2013)

    Article  Google Scholar 

  17. Keramat, A., Tijsseling, A.S., Ahmadi, A.: Investigation of transient cavitating flow in viscoelastic pipes. In: IOP Conference Series: Earth and Environmental Sciencs, vol. 12, No. 1, p. 012081 (2010)

    Google Scholar 

  18. Keramat, A., Tijsseling, A.S., Hou, Q., Ahmadi, A.: Fluid-structure interaction with pipe-wall viscoelasticity during waterhammer. J. Fluids Struct. 28, 434–455 (2012)

    Article  Google Scholar 

  19. Kodura, A.: An analysis of the impact of valve closure time on the course of water hammer. Arch. Hydro-Eng. Environ. Mech. 63(1), 35–45 (2016)

    Article  Google Scholar 

  20. Kokoshvili, S.M.: Water hammer in a viscoelastic pipe. Polym. Mech. 6(5), 786–788 (1970) (Translated from Mekhanika Polimerov 5, 908–912)

    Google Scholar 

  21. Martin, T.: Pulsierende strömung in visko-elastischen leitungssystemen. Ingenieur-Archiv 37(5), 315–325 (1969) (in German)

    Google Scholar 

  22. Meissner, E.: Berechnung instationärer strömungsvorgänge in kunststoffleitungen. 19. Lehrstuhl für Hydraulik u. Gewässerkunde. Technical University of München (1976)

    Google Scholar 

  23. Meniconi, S., Brunone, B., Ferrante, M., Massari, C.: Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve. J. Fluids Struct. 45, 235–249 (2014)

    Article  Google Scholar 

  24. Mitosek, M., Chorzelski, M.: Influence of visco-elasticity on pressure wave velocity in polyethylene MDPE pipe. Arch. Hydro-Eng. Environ. Mech. 50(2), 127–140 (2003)

    Google Scholar 

  25. Pezzinga, G., Brunone, B., Cannizzaro, D., Ferrante, M., Meniconi, S., Berni, A.: Two-dimensional features of viscoelastic models of pipe transients. J. Hydraul. Eng. 140(8), 04014036 (2014)

    Article  Google Scholar 

  26. Pezzinga, G., Brunone, B., Meniconi, S.: Relevance of pipe period on Kelvin-Voigt viscoelastic parameters: 1D and 2D inverse transient analysis. J. Hydraul. Eng. 142(12), 04016063 (2016)

    Article  Google Scholar 

  27. Rieutord, E., Blanchard, A.: Influence d’un comportement viscoélastique de la conduite dans le phénomène du coup de bélier. C. R. Acad. Sci. Paris 274, 1963–1966 (1972)

    MATH  Google Scholar 

  28. Rieutord, E., Blanchard, A.: Pulsating viscoelastic pipe flow–water-hammer. J. Hydraul. Res. 17(3), 217–229 (1979)

    Article  Google Scholar 

  29. Saechtling, H.: International Plastics Handbook, 3rd edn. Hanser Pub, Munich (1995)

    Google Scholar 

  30. Schohl, G.: Improved approximate method for simulating frequency-dependent friction in transient laminar flow. J. Fluids Eng. 115, 420–424 (1993)

    Article  Google Scholar 

  31. Soares, A.K., et al.: Analysis of PVC pipe-wall viscoelasticity during waterhammer. J. Hydraul. Eng. 134(9), 1389–1394 (2008)

    Article  Google Scholar 

  32. Suo, L., Wylie, E.B.: Impulse response method for frequency-dependent pipeline transients. J. Fluids Eng. 111(4), 478–483 (1989)

    Article  Google Scholar 

  33. Suo, L., Wylie, E.B.: Complex wavespeed and hydraulic transients in viscoelastic pipes. J. Fluids Eng. 112(4), 496–500 (1990)

    Article  Google Scholar 

  34. Urbanowicz, K.: Simple modelling of unsteady friction factor. In: Proceedings of the 12th International Conference on Pressure Surges, pp. 113–130. BHR Group, Dublin, Ireland (2015)

    Google Scholar 

  35. Urbanowicz, K.: Analytical expressions for effective weighting functions used during simulations of water hammer. J. Theor. App. Mech.-Pol. 55(3), 1029–1040 (2017)

    Article  Google Scholar 

  36. Urbanowicz, K., Firkowski, M., Zarzycki, Z.: Modelling water hammer in viscoelastic pipelines: short brief. J. Phys.: Conf. Ser. 760(1), 012037 (2016)

    Google Scholar 

  37. Urbanowicz, K., Zarzycki, Z.: Improved lumping friction model for liquid pipe flow. J. Theor. App. Mech.-Pol. 53(2), 295–305 (2015)

    Article  Google Scholar 

  38. Urbanowicz, K., Zarzycki, Z., Kudźma, S.: Universal weighting function in modeling transient cavitating pipe flow. J. Theor. App. Mech.-Pol. 50(4), 889–902 (2012)

    Google Scholar 

  39. Watters, G.Z.: The behavior of PVC pipe under the action of water hammer pressure waves. Reports (Paper 20) (1971)

    Google Scholar 

  40. Watters, G.Z., Flammer, G.H., Jeppson, R.W.: Water hammer in PVC and reinforced plastic pipe. J. Hydraul. Div. 102(7), 831–843 (1976)

    Google Scholar 

  41. Weinerowska-Bords, K.: Viscoelastic model of waterhammer in single pipeline–problems and questions. Arch. Hydro-Eng. Environ. Mech. 53(4), 331–351 (2006)

    Google Scholar 

  42. Weinerowska-Bords, K.: Alternative approach to convolution term of viscoelasticity in equations of unsteady pipe flow. J. Fluids Eng. 137(5), 054501 (2015)

    Article  Google Scholar 

  43. Yao, E., Kember, G., Hansen, D.: Water hammer analysis and parameter estimation in polymer pipes with weak strain-rate feedback. J. Eng. Mech. 142(8), 04016063 (2016)

    Article  Google Scholar 

  44. Zarzycki, Z., Kudźma, S., Urbanowicz, K.: Improved method for simulating transients of turbulent pipe flow. J. Theor. App. Mech.-Pol. 49(1), 135–158 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Firkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Urbanowicz, K., Firkowski, M. (2018). Modelling Water Hammer with Quasi-Steady and Unsteady Friction in Viscoelastic Pipelines. In: Awrejcewicz, J. (eds) Dynamical Systems in Applications. DSTA 2017. Springer Proceedings in Mathematics & Statistics, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-319-96601-4_35

Download citation

Publish with us

Policies and ethics