Skip to main content

Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case

  • Conference paper
  • First Online:
Book cover Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2017)

Abstract

Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new approach. The usage of machine learning methods, however is still far from trivial and many problems still need to be solved. Using the evaluation of photometric redshifts as a case study, we outline the main problems and some ongoing efforts to solve them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivezic, Z., et al.: LSST: from science drivers to reference design and anticipated data products. arXiv:0805.2366v4 (2008)

  2. Blake, C.A., Abdalla, F.B., Bridle, S.L., Rawlings, S.: Cosmology with the SKA. New Astron. Rev. 48(11–12), 1063–1077 (2004)

    Article  Google Scholar 

  3. Allen, M.G., Fernique, P., Boch, T., et al.: An Hierarchical Approach to Big Data. arXiv:1611.01312 (2016)

  4. Longo, G., Brescia, M., Cavuoti, S.: The astronomical data deluge: the template case of photometric redshifts. In: CEUR Workshop Proceedings, vol. 2022, pp. 27–29 (2017)

    Google Scholar 

  5. Dunham, M.: Data Mining Introductory and Advanced Topics. Prentice-Hall, Upper Saddle River (2002)

    Google Scholar 

  6. Annunziatella, M., et al.: Inside catalogs: a comparison of source extraction software. PASP 125(923), 68–82 (2013)

    Article  Google Scholar 

  7. Odenwald, S.: Cosmology in More Than 4 Dimensions. Astrophysics Workshop, N.R.L. (1987)

    Google Scholar 

  8. Paliouras, G.: Scalability of Machine Learning Algorithms. M.Sc. thesis, University of Manchester (1993)

    Google Scholar 

  9. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3, 95–99 (1988)

    Google Scholar 

  10. Brescia, M., Cavuoti, S., Longo, G., et al.: DAMEWARE: a web cyberinfrastructure for astrophysical data mining. PASP 126(942), 783–797 (2014)

    Google Scholar 

  11. Hey, T., Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Redmond (2009)

    Google Scholar 

  12. Brescia, M.: New trends in E-science: machine learning and knowledge discovery in databases. In: Horizons in Computer Science Research, vol. 7, pp. 1–73. Nova Science Publishers (2012)

    Google Scholar 

  13. Baum, W.A.: Photometric magnitudes and redshifts. In: McVittie, G.C. (ed.) IAU Symposium, vol. 15, Problems of Extra-Galactic Research, p. 390 (1962)

    Google Scholar 

  14. Connolly, A.J., Csabai, I., Szalay, A.S., et al.: Slicing through multicolour space: galaxy redshifts from broadband photometry. AJ 110, 2655 (1995)

    Article  Google Scholar 

  15. Bolzonella, M., Miralles, J.M., Pello, R.: Photometric redshifts based on standard SED fitting procedures. A&A 363, 476–492 (2000)

    Google Scholar 

  16. Arnouts, S., Cristiani, S., Moscardini, L., et al.: Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North. MNRAS 310, 540 (1999)

    Article  Google Scholar 

  17. Ilbert, O., Arnouts, S., McCracken, H.J., et al.: Accurate photometric redshifts for the CFHT Legacy Survey calibrated using the VIMOS VLT Deep Survey. A&A 457, 841 (2006)

    Article  Google Scholar 

  18. Tanaka, M.: Photometric redshift with Bayesian priors on physical properties of galaxies. AJ 801, 1, 20 (2015)

    Article  Google Scholar 

  19. Tagliaferri, R., Longo, G., Andreon, S., et al.: Neural Networks and Photometric Redshifts, ArXiv e-prints:0203445 (2002)

    Google Scholar 

  20. Cavuoti, S., Brescia, M., Tortora, C., et al.: Machine-Learning-based photometric redshifts for the KiDS ESO DR2 galaxies. MNRAS 452(3), 3100–3105 (2015)

    Article  Google Scholar 

  21. Cavuoti, S., Brescia, M., De Stefano, V., Longo, G.: Photometric redshift estimation based on data mining with PhotoRApToR. Exp. Astron. 39(1), 45–71 (2015)

    Article  Google Scholar 

  22. Brescia, M., Cavuoti, S., Longo, G., De Stefano, V.: A catalogue of photometric redshifts for the SDSS-DR9 galaxies (Research Note). Astron. Astrophys. 568, A126 (2014)

    Article  Google Scholar 

  23. Carrasco, K., Brunner, R.J.: Implementing Probabilistic Photometric Redshifts, Astronomical Data Analysis Software and Systems XXII. San Francisco: Astronomical Society of the Pacific, p. 69 (2013)

    Google Scholar 

  24. Abdalla, et al.: A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies. MNRAS 417, 1891 (2011)

    Article  Google Scholar 

  25. Collister, A.A., Lahav, O.: ANNz: estimating photometric redshifts using artificial neural networks. PASP 116, 345 (2004)

    Article  Google Scholar 

  26. Gerdes, et al.: ArborZ: photometric redshifts using boosted decision trees. AJ 715, 823 (2010)

    Article  Google Scholar 

  27. Carrasco, K., Brunner, R.J.: Sparse representation of photometric redshift PDFs: preparing for petascale astronomy. MNRAS 438(4), 3409–3421 (2014)

    Article  Google Scholar 

  28. Carrasco, K., Brunner, R.J.: Exhausting the information: novel bayesian combination of photometric redshift PDFs. MNRAS 442(4), 3380–3399 (2014)

    Article  Google Scholar 

  29. Cavuoti, S., Brescia, M., Longo, G., Mercurio, A.: Photometric redshifts with the quasi Newton algorithm (MLPQNA) results in the PHAT1 contest. A&A 546, 13 (2012)

    Article  Google Scholar 

  30. Cavuoti, S., et al.: Genetic algorithm modeling with GPU parallel computing technology smart innovation. Syst. Technol. 19, 29–39 (2013)

    Google Scholar 

  31. Cavuoti, S., et al.: Astrophysical data mining with GPU. A case study: genetic classification of globular clusters, New Astron. 26, 12–22 (2014)

    Google Scholar 

  32. Hildebrandt, H., et al.: PHAT: PHoto- z Accuracy Testing. A&A 523, A31 (2010)

    Article  Google Scholar 

  33. Hoyle, B., Rau, M.M., Bonnett, C., Seitz, S., Weller, J.: Anomaly detection for machine learning redshifts applied to SDSS galaxies. MNRAS 450, 305–316 (2015)

    Article  Google Scholar 

  34. Cavuoti, S., et al.: A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data. MNRAS 466(2), 2039–2053 (2017)

    Article  Google Scholar 

  35. Duncan, K.J., Jarvis, M.J., Brown, M.J.I., et al.: Photometric redshifts for the next generation of deep radio continuum surveys - II. Gaussian processes and hybrid estimates, arXiv:1712.04476 (2017)

  36. Laurino, O., DAbrusco, R., Longo, G., Riccio, G.: Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation. MNRAS 418, 2165 (2011)

    Article  Google Scholar 

  37. Polsterer, K.L., Gieseke, F., Igel, C., Goto, T.: Improving the performance of photometric regression models via massive parallel feature selection. In: Manset, N., Forshay, P. (ed.) Data Analysis Software and Systems. ASP Conference Series, vol. 485, p. 425 (2014)

    Google Scholar 

  38. Masters, D., Capak, P., Stern, D., et al.: Mapping the galaxy color–redshift relation: optimal photometric redshift calibration strategies for cosmology surveys. ApJ 813(1), 53 (2015)

    Article  Google Scholar 

  39. Laigle, C., et al.: The COSMOS2015 Catalog: Exploring the 1 < z < 6 Universe with Half a Million Galaxies, ApJ Supp. Ser. 224(2), 23 (2016). Article id. 24

    Article  Google Scholar 

  40. Dubath, P., Apostolakos, N., Bonchi, A., et al.: The euclid data processing challenges. Proc. IAU 12(S325), 73–82 (2016)

    Article  Google Scholar 

  41. Ahn, C.P., Alexandroff, R., Allende Prieto, C., et al.: The ninth data release of the sloan digital sky survey: first spectroscopic data from the SDSS-III baryon oscillation spectroscopic survey. ApJS 203, 21 (2012)

    Article  Google Scholar 

  42. D’Isanto, A., Cavuoti, S., Gieseke, F., Polsterer, K.L.: Return of the features - Efficient feature selection and interpretation for photometric redshifts. Submitted to A&A (2018)

    Google Scholar 

  43. Sadeh, I., Abdalla, F.B., Lahav, O.: ANNz2: photometric redshift and probability distribution function estimation using machine learning. PASP 128, 104502 (2016)

    Article  Google Scholar 

  44. Cavuoti, S., Amaro, V., Brescia, M., et al.: METAPHOR: a machine-learning-based method for the probability density estimation of photometric redshifts. MNRAS 465(2), 1959–1973 (2017)

    Article  Google Scholar 

  45. de Jong, J.T.A., Verdoes Kleijn, G.A., Erben, T., Hildebrandt, H., et al.: The third data release of the Kilo-Degree Survey and associated data products. Astron. Astrophys. 604, A134 (2017)

    Article  Google Scholar 

  46. Brescia, M., Cavuoti, S., D’Abrusco, R., Mercurio, A., Longo, G.: Photometric redshifts for quasars in multi-band surveys. ApJ 772(2), 140 (2013)

    Article  Google Scholar 

  47. Amaro, V., Cavuoti, S., Brescia M., Vellucci C., Longo, G., et al.: Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies. MNRAS submitted (2018)

    Google Scholar 

  48. Benitez, N.: Bayesian Photometric Redshift Estimation. ApJ 536(2), 571–583 (2000)

    Article  Google Scholar 

  49. Gneiting, T., Raftery, A.E., Westveld, A.H., Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133(5), 1098 (2005)

    Article  Google Scholar 

  50. Wittman, D., Bhaskar, R., Tobin, R.: Overconfidence in photometric redshift estimation. MNRAS 457, 4005 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

MB acknowledges the INAF PRIN-SKA 2017 program 1.05.01.88.04 and the funding from MIUR Premiale 2016: MITIC. MB and GL acknowledge the H2020-MSCA-ITN-2016 SUNDIAL (SUrvey Network for Deep Imaging Analysis and Learning), financed within the Call H2020-EU.1.3.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Brescia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brescia, M. et al. (2018). Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case. In: Kalinichenko, L., Manolopoulos, Y., Malkov, O., Skvortsov, N., Stupnikov, S., Sukhomlin, V. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2017. Communications in Computer and Information Science, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-319-96553-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96553-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96552-9

  • Online ISBN: 978-3-319-96553-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics